INTRODUCTION

Rabies encephalitis has the highest fatality rate among infectious diseases. Most of the estimated 61,000 annual global human deaths occur in Asia and Africa.1 Canine rabies is endemic in these areas unlike the developed countries where the disease is caused by wildlife vectors such as bats. Transmission of rabies via donor organ and vascular conduit transplantation is also recognized.2 Typically, the disease runs a fulminant course resulting in death within a week. Despite the high fatality, there is paucity of prominent neural inflammation and apoptosis in patients with rabies.3 The exact neuronal mechanisms that mediate death in rabies encephalitis remain unclear. A unique treatment protocol including anti-excitotoxic therapy and induced coma was credited with the survival of a vaccinated teenager with bat rabies encephalitis in 2005. However, multiple efforts to replicate this expensive and intense protocol have not been successful. In this article, we report the failure of the protocol in Indian patients with canine-acquired rabies and elucidate the potential explanations for the failure of the protocol in our patients.

PATIENT 1

A 23-year-old college student presented with neck pain and shoulder stiffness with anxiety and insomnia for 2 days in the local health center. He presented with tingling of the upper limbs and developed asymmetric pupils and lost doll’s eye movements. He was intubated in the emergency department in view of the low sensorium. After careful discussion with the family regarding the prognosis and the experimental nature of the Milwaukee protocol, he was initiated on ketamine (2 mg/kg/hour intravenous infusion), midazolam (2 mg/hour infusion), ribavirin, and amantadine. Alternate-day EEG monitoring revealed no abnormal discharges with no burst suppression. His CSF was positive for rabies viral RNA by real time polymerase chain reaction (PCR) confirmed rabies encephalitis. The family opted for euthanasia. At autopsy, his brain showed paucity of inflammatory cell infiltrate within the brain but diffuse strong staining for rabies nucleocapsid antigen (Figure 2).

PATIENT 2

A 32-year-old man belonging to a tribal community reported an unprovoked dog bite in the left hand 3 months before presentation. He received tetanus toxoid injection and local wound cleansing without any antirabies vaccine or immunoglobulin in a local health center. He presented with tingling of the upper limbs followed by aerophobia and hydrophobia for 2 days in 2011. He was intubated in the emergency department in view of the low sensorium. He developed refractory hypotension and died on day 14.

PATIENT 3

A 23-year-old college student presented with neck pain and shoulder stiffness with anxiety and insomnia for 2 days in...
2014. This was followed by difficulty in drinking water and swallowing food for 1 day. He had sustained an unprovoked bite on the left hand while playing with a puppy 4 months before. He did not receive any postexposure rabies prophylaxis.

After discussion with the family, he was started on therapeutic coma with ketamine (2 mg/kg/hour infusion) and diazepam (20 mg/kg via nasogastric tube), along with amantadine, vitamin C, nimodipine, and fludrocortisone. Rabies viral RNA was detected in his saliva and nuchal skin biopsy by real-time PCR. Regular transcranial Doppler monitoring did not reveal any evidence of vasospasm. He had severe autonomic dysfunction in the form of fever, heart rate variability, and alternating hypertension and hypotension. On day 8, the doses of diazepam and ketamine were tapered. His CSF and serum neutralizing antirabies virus titers remained negative. On the 11th day of hospital stay, he developed ventricular fibrillation and succumbed to the disease.

DISCUSSION

Therapeutic coma with anti-excitotoxic therapy was ineffective in our patients with rabies encephalitis. All three of our patients received N-methyl-D-aspartate–receptor antagonism with ketamine and amantadine and y-aminobutyric acid–receptor agonism with benzodiazepines to decrease the neuronal excitotoxicity and autonomic reactivity. The first patient developed significant CSF titers of rabies-neutralizing antibodies. However, when he succumbed to the illness, the brain biopsy did not reveal clearance of rabies virus. The reason for the persistence of rabies virus in the presence of high titers of antibodies questions the basic premises in which
the protocol is built. The other two patients never developed CSF or significant serum antibody titers even 10 days into the clinical illness. None of the three patients had evidence of persistence of spasms or seizures on EEG monitoring. The above findings appear to suggest a more complex pathophysiology involved in rabies than the neuronal excitotoxicity and capability of normal host immune response to clear the virus.

In contrast to the index patient, efforts to replicate the “Milwaukee protocol” have generally been unsuccessful.\(^6\)–\(^9\) This has been documented before both in bat- and canine-acquired rabies. Prolonged survival documented in rabies patients on the protocol likely reflects the effect of good intensive care and supportive treatment rather than the protocol itself.

Although natural virus-specific immunity is capable of clearing the virus from the central nervous system (CNS), the virus mitigates the immune response in several ways. Firstly, the virus induces immune hyporesponses, T-cell hypofunction, T-cell proliferation defects, and inhibition of type I interferon release within the CNS.\(^10\),\(^11\) Secondly, although the brain is infiltrated by rabies virions, the blood–brain barrier remains tightly closed during the initial phases of the illness.\(^12\) This effectively prevents the immune effector cells and rabies-specific neutralizing antibodies to enter the CNS space. Hence, the CNS becomes an “immune-protected space,” enabling continued replication of the virus. Thirdly, the CNS replication of the wild-type rabies virus is far less compared with culture-derived attenuated virus.\(^13\) Although it appears counterintuitive, this enables the virus to effectively evade immune cells, preserve neuronal structural integrity, and enable further spread. Hence, viral replication inhibition and blood–brain barrier manipulation appear to be the potential approaches for treatment in rabies. In addition, neuronal excitotoxicity, a basic premise on which the protocol is built, has not been proven in experimental models.\(^14\) The survival of the unvaccinated teenager is likely due to a less-virulent variant of the virus or a unique host genetic polymorphism than the effectiveness of the protocol itself.

Ribavirin and interferon-α are antivirals which have been used in the treatment of rabies but are limited by poor efficacy, toxicity, and inadequate penetration into the CNS. Favipiravir (T-705), a broad-spectrum viral RNA polymerase inhibitor currently shown to be efficacious as a prophylaxis and oligonucleotide-based antiviral therapeutics appear to be promising for the treatment of rabies.\(^15\),\(^16\) Although there are promising strategies in the horizon, there exists a moral dilemma in deciding which patients should be supported with intensive care in a developing country where the facilities are already scarce. Patients with canine rabies encephalitis tend to have a poor neurological recovery even if they survive as illustrated in the survivors from India elsewhere.\(^17\)

In unvaccinated individuals with canine rabies, it appears reasonable to withhold intensive treatment once the diagnosis is established. In partially vaccinated individuals with canine rabies, if intensive treatment is attempted, the family needs to understand that even if the patient survives, severe neurological sequelae are usually the rule. If the patient survives the initial few weeks, serum and CSF antibody titers should be closely monitored. If there are no CSF antibodies in the first few weeks, the probability of survival is less and treatment with palliative intent needs to be considered.

Despite repeated attempts to treat rabies encephalitis, there is a lack of easily applicable palliative care protocol for rabies patients, which could be used in a developing country. Tarantola et al.\(^18\) recently published detailed suggestions on palliative treatment of rabies which could be used in a resource-limited setting. The authors explain palliative treatment of various symptoms of rabies, dosages of drugs, alternative routes of delivery, and also address nursing care concerns. Such protocols are of immense value in reducing suffering in this fatal disease.

In conclusion, attempts to replicate the “Milwaukee protocol” for the treatment of rabies have not been successful. Newer strategies, including blood–brain barrier manipulation and novel antivirals are urgently needed to improve outcomes in this neglected tropical disease. Until then, good intensive care with supportive measures may help the occasional patient with rabies encephalitis to survive.

Received February 26, 2017. Accepted for publication August 31, 2017.

Published online October 30, 2017.

Acknowledgments: The American Society of Tropical Medicine and Hygiene (ASTMH) assisted with publication expenses.

Authors’ addresses: Abi Manesh, Rajiv Karthik, Ooriapadickal Cherian Abraham, and George M. Varghese, Department of Infectious Diseases, Christian Medical College and Hospital Vellore, Vellore, India, E-mails: abimanesh@gmail.com, rajivkarthik@gmail.com, ocherianabraham@gmail.com, and georgemvarghese@hotmail.com. Reeta Subramani Mani, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, Karnataka, India, and Department of Neurovirology, WHO Collaborating Centre for Reference and Research on Rabies, Bengaluru, India, E-mail: drreeta@gmail.com. Kishore Pichamuthu, Division of Critical Care, Christian Medical College and Hospital Vellore, Vellore, India, E-mail: drpichamuthu@yahoo.com. Manjeera Jagannati, Department of Medicine, Christian Medical College and Hospital Vellore, Vellore, India, E-mail: manjeera@hotmail.com. Vivek Mathew, Department of Neurological Sciences, Christian Medical College and Hospital Vellore, Vellore, India, E-mail: vmathew@cmcvellore.ac.in. Geeta Chacko, Section of Neuropathology, Department of Neurological Sciences & Pathology, Christian Medical College and Hospital Vellore, Vellore, India, E-mail: geetachacko@cmcvellore.ac.in.

REFERENCES

8. van Thiel PP et al., 2009. Fatal human rabies due to Duvenhage virus from a bat in Kenya: failure of treatment