• View in gallery
    Figure 1.

    The major clinical complications associated with adult and pediatric severe malaria. Clinically severe malaria is a multisystem disorder that can affect different organs and differs in presentation between children and adults. The major clinical complications in children are cerebral malaria, severe malaria anemia, and metabolic acidosis. In adults, cerebral malaria is frequently accompanied by multiorgan system complications, including metabolic acidosis, acute kidney failure, jaundice, and acute respiratory distress (ARDS).

  • View in gallery
    Figure 2.

    Schematic representation of the pathological differences between cerebral malaria CM1 and CM2. Autopsy studies in children have divided CM cases into two groups based on histological features,16 CM1 cases have infected erythrocyte sequestration in the cerebral microvasculature and no associated vascular pathology. CM2 cases are defined by cerebral sequestration plus intra- and perivascular pathology, including ring hemorrhages, fibrin-platelet thrombi, and intravascular monocytes. In the CM2 group, infected erythrocyte (IE) sequestration is frequently associated with fibrin-platelet thrombi in both capillaries and postcapillary venules. Insets provide examples of pathological features observed in CM2 cases described in Dorovini-Zis and others.15 Inset (A) shows a small branching capillary in which the upstream region is filled with sequestered IEs and one of the branches is occluded by a thrombus. This event is associated with a ring hemorrhage in which the microvessel is partially denuded of endothelial cells and is surrounded by a zone of necrosis and a ring of uninfected red blood cells in the white matter. Inset (B) shows a small vessel packed with sequestered IEs and surrounded by extravasated fibrinogen indicating increased permeability of the blood–brain barrier. Inset (C) shows a micovessel filled with monocytes containing phagocytosed hemozoin pigment. Intravascular pigmented monocytes are found adherent to the microvessel wall, but do not transverse across the blood–brain barrier. The molecular mechanisms driving the CM1 and CM2 pathophysiology are incompletely understood. Intercellular adhesion molecule 1 (ICAM-1) and endothelial protein C receptor (EPCR) are candidate brain endothelial receptors,18,31 but it is not known if the same parasite adhesion types are associated with CM1, CM2, and adult CM (not pictured). Recent studies reported that binding of IE to EPCR was associated with the development of severe malaria18 and that decreased EPCR staining on endothelial cells and increased fibrin deposition occurred at the site of IE adhesion in cerebral microvessels during fatal pediatric CM.20 This association suggests there may be causal links between cytoadhesion and microvascular pathophysiology. However, fibrin deposition is not found in CM1 and is less prominent in adult CM, highlighting gaps in our understanding of CM pathophysiology.

  • View in gallery
    Figure 3.

    Proposed influence of the host endothelial responsiveness to tumor necrosis factor (TNF) on the severity of malaria infection. Low endothelial TNF responders are less prone to upregulate receptors involved in the sequestration of infected erythrocyte (IE) and platelets than high responders. This leads to a minimal adhesion of IE and host cells and a lower pro-apoptotic signal for the endothelial cells, which might account for the absence of pathology. High responders, however, are over-activated in the presence of TNF, leading to high adhesion of IE and a strong pro-apoptotic signal, possibly resulting in the breakdown of the blood–brain barrier and, ultimately, to vasogenic edema (A). Potential clinical benefits offered by angiopoietin (Ang)-1 as a quiescence agent for high TNF-responding endothelial cells during cerebral malaria (CM) (B).

  • 1.

    World Health Organization, 2013. World Malaria Report. Available at: http://www.who.int/malaria/publications/world_malaria_report_2013/report/en/w.

    • Search Google Scholar
    • Export Citation
  • 2.

    Murray CJ, Ortblad KF, Guinovart C, Lim SS, Wolock TM, Roberts DA, Dansereau EA, Graetz N, Barber RM, Brown JC, Wang H, Duber HC, Naghavi M, Dicker D, Dandona L, Salomon JA, Heuton KR, Foreman K, Phillips DE, Fleming TD, Flaxman AD, Phillips BK, Johnson EK, Coggeshall MS, Abd-Allah F, Abera SF, Abraham JP, Abubakar I, Abu-Raddad LJ, Abu-Rmeileh NM, Achoki T, Adeyemo AO, Adou AK, Adsuar JC, Agardh EE, Akena D, Al Kahbouri MJ, Alasfoor D, Albittar MI, Alcala-Cerra G, Alegretti MA, Alemu ZA, Alfonso-Cristancho R, Alhabib S, Ali R, Alla F, Allen PJ, Alsharif U, Alvarez E, Alvis-Guzman N, Amankwaa AA, Amare AT, Amini H, Ammar W, Anderson BO, Antonio CA, Anwari P, Arnlov J, Arsenijevic VS, Artaman A, Asghar RJ, Assadi R, Atkins LS, Badawi A, Balakrishnan K, Banerjee A, Basu S, Beardsley J, Bekele T, Bell ML, Bernabe E, Beyene TJ, Bhala N, Bhalla A, Bhutta ZA, Abdulhak AB, Binagwaho A, Blore JD, Bose D, Brainin M, Breitborde N, Castaneda-Orjuela CA, Catala-Lopez F, Chadha VK, Chang JC, Chiang PP, Chuang TW, Colomar M, Cooper LT, Cooper C, Courville KJ, Cowie BC, Criqui MH, Dandona R, Dayama A, De LD, Degenhardt L, Del Pozo-Cruz B, Deribe K, Des Jarlais DC, Dessalegn M, Dharmaratne SD, Dilmen U, Ding EL, Driscoll TR, Durrani AM, Ellenbogen RG, Ermakov SP, Esteghamati A, Faraon EJ, Farzadfar F, Fereshtehnejad SM, Fijabi DO, Forouzanfar MH, Fra Paleo U, Gaffikin L, Gamkrelidze A, Gankpé FG, Geleijnse JM, Gessner BD, Gibney KB, Ginawi IA, Glaser EL, Gona P, Goto A, Gouda HN, Gugnani HC, Gupta R, Gupta R, Hafezi-Nejad N, Hamadeh RR, Hammami M, Hankey GJ, Harb HL, Haro JM, Havmoeller R, Hay SI, Hedayati MT, Pi IB, Hoek HW, Hornberger JC, Hosgood HD, Hotez PJ, Hoy DG, Huang JJ, Iburg KM, Idrisov BT, Innos K, Jacobsen KH, Jeemon P, Jensen PN, Jha V, Jiang G, Jonas JB, Juel K, Kan H, Kankindi I, Karam NE, Karch A, Karema CK, Kaul A, Kawakami N, Kazi DS, Kemp AH, Kengne AP, Keren A, Kereselidze M, Khader YS, Khalifa SE, Khan EA, Khang YH, Khonelidze I, Kinfu Y, Kinge JM, Knibbs L, Kokubo Y, Kosen S, Defo BK, Kulkarni VS, Kulkarni C, Kumar K, Kumar RB, Kumar GA, Kwan GF, Lai T, Balaji AL, Lam H, Lan Q, Lansingh VC, Larson HJ, Larsson A, Lee JT, Leigh J, Leinsalu M, Leung R, Li Y, Li Y, De Lima GM, Lin HH, Lipshultz SE, Liu S, Liu Y, Lloyd BK, Lotufo PA, Machado VM, Maclachlan JH, Magis-Rodriguez C, Majdan M, Mapoma CC, Marcenes W, Marzan MB, Masci JR, Mashal MT, Mason-Jones AJ, Mayosi BM, Mazorodze TT, Mckay AC, Meaney PA, Mehndiratta MM, Mejia-Rodriguez F, Melaku YA, Memish ZA, Mendoza W, Miller TR, Mills EJ, Mohammad KA, Mokdad AH, Mola GL, Monasta L, Montico M, Moore AR, Mori R, Moturi WN, Mukaigawara M, Murthy KS, Naheed A, Naidoo KS, Naldi L, Nangia V, Narayan KM, Nash D, Nejjari C, Nelson RG, Neupane SP, Newton CR, Ng M, Nisar MI, Nolte S, Norheim OF, Nowaseb V, Nyakarahuka L, Oh IH, Ohkubo T, Olusanya BO, Omer SB, Opio JN, Orisakwe OE, Pandian JD, Papachristou C, Caicedo AJ, Patten SB, Paul VK, Pavlin BI, Pearce N, Pereira DM, Pervaiz A, Pesudovs K, Petzold M, Pourmalek F, Qato D, Quezada AD, Quistberg DA, Rafay A, Rahimi K, Rahimi-Movaghar V, Ur Rahman S, Raju M, Rana SM, Razavi H, Reilly RQ, Remuzzi G, Richardus JH, Ronfani L, Roy N, Sabin N, Saeedi MY, Sahraian MA, Samonte GM, Sawhney M, Schneider IJ, Schwebel DC, Seedat S, Sepanlou SG, Servan-Mori EE, Sheikhbahaei S, Shibuya K, Shin HH, Shiue I, Shivakoti R, Sigfusdottir ID, Silberberg DH, Silva AP, Simard EP, Singh JA, Skirbekk V, Sliwa K, Soneji S, Soshnikov SS, Sreeramareddy CT, Stathopoulou VK, Stroumpoulis K, Swaminathan S, Sykes BL, Tabb KM, Talongwa RT, Tenkorang EY, Terkawi AS, Thomson AJ, Thorne-Lyman AL, Towbin JA, Traebert J, Tran BX, Dimbuene ZT, Tsilimbaris M, Uchendu US, Ukwaja KN, Uzun SB, Vallely AJ, Vasankari TJ, Venketasubramanian N, Violante FS, Vlassov VV, Vollset SE, Waller S, Wallin MT, Wang L, Wang X, Wang Y, Weichenthal S, Weiderpass E, Weintraub RG, Westerman R, White RA, Wilkinson JD, Williams TN, Woldeyohannes SM, Wong JQ, Xu G, Yang YC, Yano Y, Yentur GK, Yip P, Yonemoto N, Yoon SJ, Younis M, Yu C, Jin KY, El Sayed Zaki M, Zhao Y, Zheng Y, Zhou M, Zhu J, Zou XN, Lopez AD, Vos T, 2014. Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384: 10051070.

    • Search Google Scholar
    • Export Citation
  • 3.

    Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, Fullman N, Naghavi M, Lozano R, Lopez AD, 2012. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379: 413431.

    • Search Google Scholar
    • Export Citation
  • 4.

    Miller LH, Baruch DI, Marsh K, Doumbo OK, 2002. The pathogenic basis of malaria. Nature 415: 673679.

  • 5.

    Beales PF, Brabin B, Dorman E, Gilles HM, Loutain L, Marsh K, Molyneux ME, Olliaro P, Schapira A, Touze JE, Hien TT, Warrell DA, White N, 2000. Severe falciparum malaria. Trans R Soc Trop Med Hyg 94 (Suppl 1): S1S90.

    • Search Google Scholar
    • Export Citation
  • 6.

    Marsh K, 1992. Malaria—a neglected disease? Parasitology 104 (Suppl): S53S69.

  • 7.

    Marchiafava E, Bignami A, 1894. On summer-autumnal fevers. Charles TE, ed. Two Monographs on Malaria and the Parasites of Malarial Fevers. London, United Kingdom: The New Sydenham Society, 1393.

    • Search Google Scholar
    • Export Citation
  • 8.

    Clark IA, Rockett KA, 1994. The cytokine theory of human cerebral malaria. Parasitol Today 10: 410412.

  • 9.

    van der Heyde HC, Nolan J, Combes V, Gramaglia I, Grau GE, 2006. A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends Parasitol 22: 503508.

    • Search Google Scholar
    • Export Citation
  • 10.

    Wassmer SC, Combes V, Grau GE, 2011. Platelets and microparticles in cerebral malaria: the unusual suspects. Drug Discov Today Dis Mech 8: e15e23.

    • Search Google Scholar
    • Export Citation
  • 11.

    Francischetti IM, Seydel KB, Monteiro RQ, 2008. Blood coagulation, inflammation, and malaria. Microcirculation 15: 81107.

  • 12.

    Moxon CA, Heyderman RS, Wassmer SC, 2009. Dysregulation of coagulation in cerebral malaria. Mol Biochem Parasitol 166: 99108.

  • 13.

    Medana IM, Turner GD, 2006. Human cerebral malaria and the blood-brain barrier. Int J Parasitol 36: 555568.

  • 14.

    Mohanty S, Taylor TE, Kampondeni S, Potchen MJ, Panda P, Majhi M, Mishra SK, Wassmer SC, 2014. Magnetic resonance imaging during life: the key to unlock cerebral malaria pathogenesis? Malar J 13: 276.

    • Search Google Scholar
    • Export Citation
  • 15.

    Dorovini-Zis K, Schmidt K, Huynh H, Fu W, Whitten RO, Milner D, Kamiza S, Molyneux M, Taylor TE, 2011. The neuropathology of fatal cerebral malaria in Malawian children. Am J Pathol 178: 21462158.

    • Search Google Scholar
    • Export Citation
  • 16.

    Taylor TE, Fu WJ, Carr RA, Whitten RO, Mueller JS, Fosiko NG, Lewallen S, Liomba NG, Molyneux ME, 2004. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med 10: 143145.

    • Search Google Scholar
    • Export Citation
  • 17.

    Spitz S, 1946. The pathology of acute falciparum malaria. Mil Surg 99: 555572.

  • 18.

    Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JE, Avril M, Brazier AJ, Freeth J, Jespersen JS, Nielsen MA, Magistrado P, Lusingu J, Smith JD, Higgins MK, Theander TG, 2013. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498: 502505.

    • Search Google Scholar
    • Export Citation
  • 19.

    Bouwens EA, Stavenuiter F, Mosnier LO, 2013. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost 11 (Suppl 1): 242253.

    • Search Google Scholar
    • Export Citation
  • 20.

    Moxon CA, Wassmer SC, Milner DA Jr, Chisala NV, Taylor TE, Seydel KB, Molyneux ME, Faragher B, Esmon CT, Downey C, Toh CH, Craig AG, Heyderman RS, 2013. Loss of endothelial protein C receptors links coagulation and inflammation to parasite sequestration in cerebral malaria in African children. Blood 122: 842851.

    • Search Google Scholar
    • Export Citation
  • 21.

    Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM, 2007. Vivax malaria: neglected and not benign. Am J Trop Med Hyg 77: 7987.

  • 22.

    Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, Cheng Q, Coulson RM, Crabb BS, del Portillo HA, Essien K, Feldblyum TV, Fernandez-Becerra C, Gilson PR, Gueye AH, Guo X, Kang'a S, Kooij TW, Korsinczky M, Meyer EV, Nene V, Paulsen I, White O, Ralph SA, Ren Q, Sargeant TJ, Salzberg SL, Stoeckert CJ, Sullivan SA, Yamamoto MM, Hoffman SL, Wortman JR, Gardner MJ, Galinski MR, Barnwell JW, Fraser-Liggett CM, 2008. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455: 757763.

    • Search Google Scholar
    • Export Citation
  • 23.

    Dondorp A, Nosten F, Stepniewska K, Day N, White N, 2005. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 366: 717725.

    • Search Google Scholar
    • Export Citation
  • 24.

    Dondorp AM, Fanello CI, Hendriksen IC, Gomes E, Seni A, Chhaganlal KD, Bojang K, Olaosebikan R, Anunobi N, Maitland K, Kivaya E, Agbenyega T, Nguah SB, Evans J, Gesase S, Kahabuka C, Mtove G, Nadjm B, Deen J, Mwanga-Amumpaire J, Nansumba M, Karema C, Umulisa N, Uwimana A, Mokuolu OA, Adedoyin OT, Johnson WB, Tshefu AK, Onyamboko MA, Sakulthaew T, Ngum WP, Silamut K, Stepniewska K, Woodrow CJ, Bethell D, Wills B, Oneko M, Peto TE, von Seidlein L, Day NP, White NJ, 2010. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet 376: 16471657.

    • Search Google Scholar
    • Export Citation
  • 25.

    Newton PN, Stepniewska K, Dondorp A, Silamut K, Chierakul W, Krishna S, Davis TM, Suputtamongkol Y, Angus B, Pukrittayakamee S, Ruangveerayuth R, Hanson J, Day NP, White NJ, 2013. Prognostic indicators in adults hospitalized with falciparum malaria in western Thailand. Malar J 12: 229.

    • Search Google Scholar
    • Export Citation
  • 26.

    White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM, 2014. Malaria. Lancet 383: 723735.

  • 27.

    Marsh K, Snow RW, 1997. Host-parasite interaction and morbidity in malaria endemic areas. Philos Trans R Soc Lond B Biol Sci 352: 13851394.

    • Search Google Scholar
    • Export Citation
  • 28.

    Marsh K, Forster D, Waruiru C, Mwangi I, Winstanley M, Marsh V, Newton C, Winstanley P, Warn P, Peshu N, 1995. Indicators of life-threatening malaria in African children. N Engl J Med 332: 13991404.

    • Search Google Scholar
    • Export Citation
  • 29.

    Mohanty S, Mishra SK, Pati SS, Pattnaik J, Das BS, 2003. Complications and mortality patterns due to Plasmodium falciparum malaria in hospitalized adults and children, Rourkela, Orissa, India. Trans R Soc Trop Med Hyg 97: 6970.

    • Search Google Scholar
    • Export Citation
  • 30.

    MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA, 1985. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol 119: 385401.

    • Search Google Scholar
    • Export Citation
  • 31.

    Turner GD, Morrison H, Jones M, Davis TM, Looareesuwan S, Buley ID, Gatter KC, Newbold CI, Pukritayakamee S, Nagachinta B, White NJ, Berendt AR, 1994. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol 145: 10571069.

    • Search Google Scholar
    • Export Citation
  • 32.

    World Health Organization, 2011. World Malaria Report 2011. Geneva, Switzerland: World Health Organization.

  • 33.

    Milner DA Jr, Whitten RO, Kamiza S, Carr R, Liomba G, Dzamalala C, Seydel KB, Molyneux ME, Taylor TE, 2014. The systemic pathology of cerebral malaria in African children. Front Cell Infect Microbiol 4: 104.

    • Search Google Scholar
    • Export Citation
  • 34.

    Nagatake T, Hoang VT, Tegoshi T, Rabbege J, Ann TK, Aikawa M, 1992. Pathology of falciparum malaria in Vietnam. Am J Trop Med Hyg 47: 259264.

  • 35.

    Riganti M, Pongponratn E, Tegoshi T, Looareesuwan S, Punpoowong B, Aikawa M, 1990. Human cerebral malaria in Thailand: a clinico-pathological correlation. Immunol Lett 25: 199205.

    • Search Google Scholar
    • Export Citation
  • 36.

    Toro G, Roman G, 1978. Cerebral malaria. A disseminated vasculomyelinopathy. Arch Neurol 35: 271275.

  • 37.

    Oo MM, Aikawa M, Than T, Aye TM, Myint PT, Igarashi I, Schoene WC, 1987. Human cerebral malaria: a pathological study. J Neuropathol Exp Neurol 46: 223231.

    • Search Google Scholar
    • Export Citation
  • 38.

    Maneerat Y, Viriyavejakul P, Punpoowong B, Jones M, Wilairatana P, Pongponratn E, Turner GD, Udomsangpetch R, 2000. Inducible nitric oxide synthase expression is increased in the brain in fatal cerebral malaria. Histopathology 37: 269277.

    • Search Google Scholar
    • Export Citation
  • 39.

    Brown H, Hien TT, Day N, Mai NT, Chuong LV, Chau TT, Loc PP, Phu NH, Bethell D, Farrar J, Gatter K, White N, Turner G, 1999. Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 25: 331340.

    • Search Google Scholar
    • Export Citation
  • 40.

    Medana IM, Day NP, Hien TT, Mai NT, Bethell D, Phu NH, Farrar J, Esiri MM, White NJ, Turner GD, 2002. Axonal injury in cerebral malaria. Am J Pathol 160: 655666.

    • Search Google Scholar
    • Export Citation
  • 41.

    Porta J, Carota A, Pizzolato GP, Wildi E, Widmer MC, Margairaz C, Grau GE, 1993. Immunopathological changes in human cerebral malaria. Clin Neuropathol 12: 142146.

    • Search Google Scholar
    • Export Citation
  • 42.

    Haldar K, Murphy SC, Milner DA, Taylor TE, 2007. Malaria: mechanisms of erythrocytic infection and pathological correlates of severe disease. Annu Rev Pathol 2: 217249.

    • Search Google Scholar
    • Export Citation
  • 43.

    Brown HC, Chau TT, Mai NT, Day NP, Sinh DX, White NJ, Hien TT, Farrar J, Turner GD, 2000. Blood-brain barrier function in cerebral malaria and CNS infections in Vietnam. Neurology 55: 104111.

    • Search Google Scholar
    • Export Citation
  • 44.

    Jenkins N, Wu Y, Chakravorty S, Kai O, Marsh K, Craig A, 2007. Plasmodium falciparum intercellular adhesion molecule-1-based cytoadherence-related signaling in human endothelial cells. J Infect Dis 196: 321327.

    • Search Google Scholar
    • Export Citation
  • 45.

    Tripathi AK, Sullivan DJ, Stins MF, 2007. Plasmodium falciparum-infected erythrocytes decrease the integrity of human blood-brain barrier endothelial cell monolayers. J Infect Dis 195: 942950.

    • Search Google Scholar
    • Export Citation
  • 46.

    Gillrie MR, Lee K, Gowda DC, Davis SP, Monestier M, Cui L, Hien TT, Day NP, Ho M, 2012. Plasmodium falciparum histones induce endothelial proinflammatory response and barrier dysfunction. Am J Pathol 180: 10281039.

    • Search Google Scholar
    • Export Citation
  • 47.

    Medana IM, Day NP, Sachanonta N, Mai NT, Dondorp AM, Pongponratn E, Hien TT, White NJ, Turner GD, 2011. Coma in fatal adult human malaria is not caused by cerebral oedema. Malar J 10: 267.

    • Search Google Scholar
    • Export Citation
  • 48.

    Ponsford MJ, Medana IM, Prapansilp P, Hien TT, Lee SJ, Dondorp AM, Esiri MM, Day NP, White NJ, Turner GD, 2012. Sequestration and microvascular congestion are associated with coma in human cerebral malaria. J Infect Dis 205: 663671.

    • Search Google Scholar
    • Export Citation
  • 49.

    Dondorp AM, Ince C, Charunwatthana P, Hanson J, van Kuijen A, Faiz MA, Rahman MR, Hasan M, Bin YE, Ghose A, Ruangveerayut R, Limmathurotsakul D, Mathura K, White NJ, Day NP, 2008. Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria. J Infect Dis 197: 7984.

    • Search Google Scholar
    • Export Citation
  • 50.

    Aird WC, 2012. Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2: a006429.

  • 51.

    Maccormick IJ, Beare NA, Taylor TE, Barrera V, White VA, Hiscott P, Molyneux ME, Dhillon B, Harding SP, 2014. Cerebral malaria in children: using the retina to study the brain. Brain 137: 21192142.

    • Search Google Scholar
    • Export Citation
  • 52.

    Beare NA, Lewallen S, Taylor TE, Molyneux ME, 2011. Redefining cerebral malaria by including malaria retinopathy. Future Microbiol 6: 349355.

  • 53.

    White VA, Lewallen S, Beare NA, Molyneux ME, Taylor TE, 2009. Retinal pathology of pediatric cerebral malaria in Malawi. PLoS One 4: e4317.

  • 54.

    Lewallen S, White VA, Whitten RO, Gardiner J, Hoar B, Lindley J, Lochhead J, McCormick A, Wade K, Tembo M, Mwenechanyana J, Molyneux ME, Taylor TE, 2000. Clinical-histopathological correlation of the abnormal retinal vessels in cerebral malaria. Arch Ophthalmol 118: 924928.

    • Search Google Scholar
    • Export Citation
  • 55.

    Beare NA, Harding SP, Taylor TE, Lewallen S, Molyneux ME, 2009. Perfusion abnormalities in children with cerebral malaria and malarial retinopathy. J Infect Dis 199: 263271.

    • Search Google Scholar
    • Export Citation
  • 56.

    Maude RJ, Beare NA, Abu Sayeed A, Chang CC, Charunwatthana P, Faiz MA, Hossain A, Yunus EB, Hoque MG, Hasan MU, White NJ, Day NP, Dondorp AM, 2009. The spectrum of retinopathy in adults with Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 103: 665671.

    • Search Google Scholar
    • Export Citation
  • 57.

    Abu Sayeed A, Maude RJ, Hasan MU, Mohammed N, Hoque MG, Dondorp AM, Faiz MA, 2011. Malarial retinopathy in Bangladeshi adults. Am J Trop Med Hyg 84: 141147.

    • Search Google Scholar
    • Export Citation
  • 58.

    Beare NA, Taylor TE, Harding SP, Lewallen S, Molyneux ME, 2006. Malarial retinopathy: a newly established diagnostic sign in severe malaria. Am J Trop Med Hyg 75: 790797.

    • Search Google Scholar
    • Export Citation
  • 59.

    Mohanty S, Mishra SK, Patnaik R, Dutt AK, Pradhan S, Das B, Patnaik J, Mohanty AK, Lee SJ, Dondorp AM, 2011. Brain swelling and mannitol therapy in adult cerebral malaria: a randomized trial. Clin Infect Dis 53: 349355.

    • Search Google Scholar
    • Export Citation
  • 60.

    Newton CR, Peshu N, Kendall B, Kirkham FJ, Sowunmi A, Waruiru C, Mwangi I, Murphy SA, Marsh K, 1994. Brain swelling and ischaemia in Kenyans with cerebral malaria. Arch Dis Child 70: 281287.

    • Search Google Scholar
    • Export Citation
  • 61.

    Patankar TF, Karnad DR, Shetty PG, Desai AP, Prasad SR, 2002. Adult cerebral malaria: prognostic importance of imaging findings and correlation with postmortem findings. Radiology 224: 811816.

    • Search Google Scholar
    • Export Citation
  • 62.

    Looareesuwan S, Wilairatana P, Krishna S, Kendall B, Vannaphan S, Viravan C, White NJ, 1995. Magnetic resonance imaging of the brain in patients with cerebral malaria. Clin Infect Dis 21: 300309.

    • Search Google Scholar
    • Export Citation
  • 63.

    Potchen MJ, Kampondeni SD, Seydel KB, Birbeck GL, Hammond CA, Bradley WG, DeMarco JK, Glover SJ, Ugorji JO, Latourette MT, Siebert JE, Molyneux ME, Taylor TE, 2012. Acute brain MRI findings in 120 Malawian children with cerebral malaria: new insights into an ancient disease. AJNR 33: 17401746.

    • Search Google Scholar
    • Export Citation
  • 64.

    Seydel KB, Kampondeni SD, Valim C, Potchen MJ, Milner DA, Muwalo FW, Birbeck GL, Bradley WG, Fox LL, Glover SJ, Hammond CA, Heyderman RS, Chilingulo CA, Molyneux ME, Taylor TE, 2015. Brain swelling and death in pediatric cerebral malaria. N Engl J Med 372: 11261137.

    • Search Google Scholar
    • Export Citation
  • 65.

    Potchen MJ, Kampondeni SD, Ibrahim K, Bonner J, Seydel KB, Taylor TE, Birbeck GL, 2013. NeuroInterp: a method for facilitating neuroimaging research on cerebral malaria. Neurology 81: 585588.

    • Search Google Scholar
    • Export Citation
  • 66.

    Ho M, White NJ, 1999. Molecular mechanisms of cytoadherence in malaria. Am J Physiol 276: C1231C1242.

  • 67.

    Wassmer SC, Combes V, Grau GE, 2003. Pathophysiology of cerebral malaria: role of host cells in the modulation of cytoadhesion. Ann N Y Acad Sci 992: 3038.

    • Search Google Scholar
    • Export Citation
  • 68.

    Combes V, Coltel N, Faille D, Wassmer SC, Grau GE, 2006. Cerebral malaria: role of microparticles and platelets in alterations of the blood-brain barrier. Int J Parasitol 36: 541546.

    • Search Google Scholar
    • Export Citation
  • 69.

    Wassmer SC, Moxon CA, Taylor T, Grau GE, Molyneux ME, Craig AG, 2011. Vascular endothelial cells cultured from patients with cerebral or uncomplicated malaria exhibit differential reactivity to TNF. Cell Microbiol 13: 198209.

    • Search Google Scholar
    • Export Citation
  • 70.

    Zehnbauer B, 2005. Population genetics in critical illness. Crit Care Med 33: 242243.

  • 71.

    Di Perri G, Di Perri IG, Monteiro GB, Bonora S, Hennig C, Cassatella M, Micciolo R, Vento S, Dusi S, Bassetti D, Concia E, 1995. Pentoxifylline as a supportive agent in the treatment of cerebral malaria in children. J Infect Dis 171: 13171322.

    • Search Google Scholar
    • Export Citation
  • 72.

    van Hensbroek MB, Palmer A, Onyiorah E, Schneider G, Jaffar S, Dolan G, Memming H, Frenkel J, Enwere G, Bennett S, Kwiatkowski D, Greenwood B, 1996. The effect of a monoclonal antibody to tumor necrosis factor on survival from childhood cerebral malaria. J Infect Dis 174: 10911097.

    • Search Google Scholar
    • Export Citation
  • 73.

    Wassmer SC, Cianciolo GJ, Combes V, Grau GE, 2005. Inhibition of endothelial activation: a new way to treat cerebral malaria? PLoS Med 2: e245.

  • 74.

    Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O'Connor DS, Li F, Altieri DC, Sessa WC, 2000. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275: 91029105.

    • Search Google Scholar
    • Export Citation
  • 75.

    Page AV, Liles WC, 2013. Biomarkers of endothelial activation/dysfunction in infectious diseases. Virulence 4: 507516.

  • 76.

    Mei SH, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ, 2007. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 4: e269.

    • Search Google Scholar
    • Export Citation
  • 77.

    Aird WC, Mosnier LO, Fairhurst RM, 2014. Plasmodium falciparum picks (on) EPCR. Blood 123: 163167.

  • 78.

    Ho M, 2014. EPCR: holy grail of malaria cytoadhesion? Blood 123: 157159.

  • 79.

    Dondorp AM, Desakorn V, Pongtavornpinyo W, Sahassananda D, Silamut K, Chotivanich K, Newton PN, Pitisuttithum P, Smithyman AM, White NJ, Day NP, 2005. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med 2: e204.

    • Search Google Scholar
    • Export Citation
  • 80.

    Howard RJ, Uni S, Aikawa M, Aley SB, Leech JH, Lew AM, Wellems TE, Rener J, Taylor DW, 1986. Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes. J Cell Biol 103: 12691277.

    • Search Google Scholar
    • Export Citation
  • 81.

    Mayxay M, Pukrittayakamee S, Chotivanich K, Looareesuwan S, White NJ, 2001. Persistence of Plasmodium falciparum HRP-2 in successfully treated acute falciparum malaria. Trans R Soc Trop Med Hyg 95: 179182.

    • Search Google Scholar
    • Export Citation
  • 82.

    Seydel KB, Fox LL, Glover SJ, Reeves MJ, Pensulo P, Muiruri A, Mpakiza A, Molyneux ME, Taylor TE, 2012. Plasma concentrations of parasite histidine-rich protein 2 distinguish between retinopathy-positive and retinopathy-negative cerebral malaria in Malawian children. J Infect Dis 206: 309318.

    • Search Google Scholar
    • Export Citation
  • 83.

    Fox LL, Taylor TE, Pensulo P, Liomba A, Mpakiza A, Varela A, Glover SJ, Reeves MJ, Seydel KB, 2013. Histidine-rich protein 2 plasma levels predict progression to cerebral malaria in Malawian children with Plasmodium falciparum infection. J Infect Dis 208: 500503.

    • Search Google Scholar
    • Export Citation
  • 84.

    Hendriksen IC, Mwanga-Amumpaire J, von Seidlein L, Mtove G, White LJ, Olaosebikan R, Lee SJ, Tshefu AK, Woodrow C, Amos B, Karema C, Saiwaew S, Maitland K, Gomes E, Pan-Ngum W, Gesase S, Silamut K, Reyburn H, Joseph S, Chotivanich K, Fanello CI, Day NP, White NJ, Dondorp AM, 2012. Diagnosing severe falciparum malaria in parasitaemic African children: a prospective evaluation of plasma PfHRP2 measurement. PLoS Med 9: e1001297.

    • Search Google Scholar
    • Export Citation
  • 85.

    Goncalves BP, Fried M, Duffy PE, 2014. Parasite burden and severity of malaria in Tanzanian children. N Engl J Med 371: 482.

  • 86.

    Lim C, Hansen E, DeSimone TM, Moreno Y, Junker K, Bei A, Brugnara C, Buckee CO, Duraisingh MT, 2013. Expansion of host cellular niche can drive adaptation of a zoonotic malaria parasite to humans. Nat Commun 4: 1638.

    • Search Google Scholar
    • Export Citation
  • 87.

    Iyer JK, Amaladoss A, Genesan S, Preiser PR, 2007. Variable expression of the 235 kDa rhoptry protein of Plasmodium yoelii mediate host cell adaptation and immune evasion. Mol Microbiol 65: 333346.

    • Search Google Scholar
    • Export Citation
  • 88.

    Chotivanich K, Udomsangpetch R, Simpson JA, Newton P, Pukrittayakamee S, Looareesuwan S, White NJ, 2000. Parasite multiplication potential and the severity of falciparum malaria. J Infect Dis 181: 12061209.

    • Search Google Scholar
    • Export Citation
  • 89.

    Persson KE, McCallum FJ, Reiling L, Lister NA, Stubbs J, Cowman AF, Marsh K, Beeson JG, 2008. Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies. J Clin Invest 118: 342351.

    • Search Google Scholar
    • Export Citation
  • 90.

    Halliday KE, Karanja P, Turner EL, Okello G, Njagi K, Dubeck MM, Allen E, Jukes MC, Brooker SJ, 2012. Plasmodium falciparum, anaemia and cognitive and educational performance among school children in an area of moderate malaria transmission: baseline results of a cluster randomized trial on the coast of Kenya. Trop Med Int Health 17: 532549.

    • Search Google Scholar
    • Export Citation
  • 91.

    Deans AM, Lyke KE, Thera MA, Plowe CV, Kone A, Doumbo OK, Kai O, Marsh K, Mackinnon MJ, Raza A, Rowe JA, 2006. Low multiplication rates of African Plasmodium falciparum isolates and lack of association of multiplication rate and red blood cell selectivity with malaria virulence. Am J Trop Med Hyg 74: 554563.

    • Search Google Scholar
    • Export Citation
  • 92.

    Cowman AF, Crabb BS, 2006. Invasion of red blood cells by malaria parasites. Cell 124: 755766.

  • 93.

    Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC, Feldman M, Taraschi TF, Howard RJ, 1995. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82: 7787.

    • Search Google Scholar
    • Export Citation
  • 94.

    Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, Pinches R, Newbold CI, Miller LH, 1995. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82: 101110.

    • Search Google Scholar
    • Export Citation
  • 95.

    Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, Peterson DS, Ravetch JA, Wellems TE, 1995. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82: 89100.

    • Search Google Scholar
    • Export Citation
  • 96.

    Kraemer SM, Smith JD, 2006. A family affair: var genes, PfEMP1 binding, and malaria disease. Curr Opin Microbiol 9: 374380.

  • 97.

    Gardner MJ, 1999. The genome of the malaria parasite. Curr Opin Genet Dev 9: 704708.

  • 98.

    Barry AE, Leliwa-Sytek A, Tavul L, Imrie H, Migot-Nabias F, Brown SM, McVean GAV, Day KP, 2007. Population genomics of the immune evasion (var) genes of Plasmodium falciparum. PLoS Pathog 3: e34.

    • Search Google Scholar
    • Export Citation
  • 99.

    Lavstsen T, Salanti A, Jensen AT, Arnot DE, Theander TG, 2003. Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions. Malar J 2: 27.

    • Search Google Scholar
    • Export Citation
  • 100.

    Kraemer SM, Kyes SA, Aggarwal G, Springer AL, Nelson SO, Christodoulou Z, Smith LM, Wang W, Levin E, Newbold CI, Myler PJ, Smith JD, 2007. Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates. BMC Genomics 8: 45.

    • Search Google Scholar
    • Export Citation
  • 101.

    Rask TS, Hansen DA, Theander TG, Gorm PA, Lavstsen T, 2010. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes—divide and conquer. PLoS Comput Biol 6: e1000933.

    • Search Google Scholar
    • Export Citation
  • 102.

    Trimnell AR, Kraemer SM, Mukherjee S, Phippard DJ, Janes JH, Flamoe E, Su XZ, Awadalla P, Smith JD, 2006. Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. Mol Biochem Parasitol 148: 169180.

    • Search Google Scholar
    • Export Citation
  • 103.

    Smith JD, Subramanian G, Gamain B, Baruch DI, Miller LH, 2000. Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family. Mol Biochem Parasitol 110: 293310.

    • Search Google Scholar
    • Export Citation
  • 104.

    Fried M, Duffy PE, 1996. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272: 15021504.

  • 105.

    Salanti A, Staalsoe T, Lavstsen T, Jensen AT, Sowa MP, Arnot DE, Hviid L, Theander TG, 2003. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol 49: 179191.

    • Search Google Scholar
    • Export Citation
  • 106.

    Jensen AT, Magistrado P, Sharp S, Joergensen L, Lavstsen T, Chiucchiuini A, Salanti A, Vestergaard LS, Lusingu JP, Hermsen R, Sauerwein R, Christensen J, Nielsen MA, Hviid L, Sutherland C, Staalsoe T, Theander TG, 2004. Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes. J Exp Med 199: 11791190.

    • Search Google Scholar
    • Export Citation
  • 107.

    Kyriacou HM, Stone GN, Challis RJ, Raza A, Lyke KE, Thera MA, Kone AK, Doumbo OK, Plowe CV, Rowe JA, 2006. Differential var gene transcription in Plasmodium falciparum isolates from patients with cerebral malaria compared to hyperparasitaemia. Mol Biochem Parasitol 150: 211218.

    • Search Google Scholar
    • Export Citation
  • 108.

    Warimwe GM, Keane TM, Fegan G, Musyoki JN, Newton CR, Pain A, Berriman M, Marsh K, Bull PC, 2009. Plasmodium falciparum var gene expression is modified by host immunity. Proc Natl Acad Sci USA 106: 2180121806.

    • Search Google Scholar
    • Export Citation
  • 109.

    Cham GK, Turner L, Lusingu J, Vestergaard L, Mmbando BP, Kurtis JD, Jensen AT, Salanti A, Lavstsen T, Theander TG, 2009. Sequential, ordered acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 domains. J Immunol 183: 33563363.

    • Search Google Scholar
    • Export Citation
  • 110.

    Rovira-Vallbona E, Dobano C, Bardaji A, Cistero P, Romagosa C, Serra-Casas E, Quinto L, Bassat Q, Sigauque B, Alonso PL, Ordi J, Menendez C, Mayor A, 2011. Transcription of var genes other than var2csa in Plasmodium falciparum parasites infecting Mozambican pregnant women. J Infect Dis 204: 2735.

    • Search Google Scholar
    • Export Citation
  • 111.

    Avril M, Tripathi AK, Brazier AJ, Andisi C, Janes JH, Soma VL, Sullivan DJ Jr, Bull PC, Stins MF, Smith JD, 2012. A restricted subset of var genes mediates adherence of Plasmodium falciparum-infected erythrocytes to brain endothelial cells. Proc Natl Acad Sci USA 109: E1782E1790.

    • Search Google Scholar
    • Export Citation
  • 112.

    Claessens A, Adams Y, Ghumra A, Lindergard G, Buchan CC, Andisi C, Bull PC, Mok S, Gupta AP, Wang CW, Turner L, Arman M, Raza A, Bozdech Z, Rowe JA, 2012. A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proc Natl Acad Sci USA 109: E1772E1781.

    • Search Google Scholar
    • Export Citation
  • 113.

    Lavstsen T, Turner L, Saguti F, Magistrado P, Rask TS, Jespersen JS, Wang CW, Berger SS, Baraka V, Marquard AM, Seguin-Orlando A, Willerslev E, Gilbert MT, Lusingu J, Theander TG, 2012. Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children. Proc Natl Acad Sci USA 109: E1791E1800.

    • Search Google Scholar
    • Export Citation
  • 114.

    Esmon CT, 2012. Protein C anticoagulant system—anti-inflammatory effects. Semin Immunopathol 34: 127132.

  • 115.

    Avril M, Brazier AJ, Melcher M, Sampath S, Smith JD, 2013. DC8 and DC13 var genes associated with severe malaria bind avidly to diverse endothelial cells. PLoS Pathog 9: e1003430.

    • Search Google Scholar
    • Export Citation
  • 116.

    Bertin GI, Lavstsen T, Guillonneau F, Doritchamou J, Wang CW, Jespersen JS, Ezimegnon S, Fievet N, Alao MJ, Lalya F, Massougbodji A, Ndam NT, Theander TG, Deloron P, 2013. Expression of the domain cassette 8 Plasmodium falciparum erythrocyte membrane protein 1 is associated with cerebral malaria in Benin. PLoS One 8: e68368.

    • Search Google Scholar
    • Export Citation
  • 117.

    Gething PW, Elyazar IR, Moyes CL, Smith DL, Battle KE, Guerra CA, Patil AP, Tatem AJ, Howes RE, Myers MF, George DB, Horby P, Wertheim HF, Price RN, Mueller I, Baird JK, Hay SI, 2012. A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis 6: e1814.

    • Search Google Scholar
    • Export Citation
  • 118.

    Miller LH, Mason SJ, Clyde DF, McGinniss MH, 1976. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med 295: 302304.

    • Search Google Scholar
    • Export Citation
  • 119.

    Costa FT, Lopes SC, Albrecht L, Ataide R, Siqueira AM, Souza RM, Russell B, Renia L, Marinho CR, Lacerda MV, 2012. On the pathogenesis of Plasmodium vivax malaria: perspectives from the Brazilian field. Int J Parasitol 42: 10991105.

    • Search Google Scholar
    • Export Citation
  • 120.

    Baird JK, 2013. Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clin Microbiol Rev 26: 3657.

  • 121.

    Naing C, Whittaker MA, Nyunt Wai V, Mak JW, 2014. Is Plasmodium vivax malaria a severe malaria? A systematic review and meta-analysis. PLoS Negl Trop Dis 8: e3071.

    • Search Google Scholar
    • Export Citation
  • 122.

    Costa FT, Lopes SC, Ferrer M, Leite JA, Martin-Jaular L, Bernabeu M, Nogueira PA, Mourao MP, Fernandez-Becerra C, Lacerda MV, del Portillo H, 2011. On cytoadhesion of Plasmodium vivax: raison d'etre? Mem Inst Oswaldo Cruz 106 (Suppl 1): 7984.

    • Search Google Scholar
    • Export Citation
  • 123.

    Karunaweera ND, Grau GE, Gamage P, Carter R, Mendis KN, 1992. Dynamics of fever and serum levels of tumor necrosis factor are closely associated during clinical paroxysms in Plasmodium vivax malaria. Proc Natl Acad Sci USA 89: 32003203.

    • Search Google Scholar
    • Export Citation
  • 124.

    Luxemburger C, Thwai KL, White NJ, Webster HK, Kyle DE, Maelankirri L, Chongsuphajaisiddhi T, Nosten F, 1996. The epidemiology of malaria in a Karen population on the western border of Thailand. Trans R Soc Trop Med Hyg 90: 105111.

    • Search Google Scholar
    • Export Citation
  • 125.

    Collins WE, Jeffery GM, Roberts JM, 2004. A retrospective examination of the effect of fever and microgametocyte count on mosquito infection on humans infected with Plasmodium vivax. Am J Trop Med Hyg 70: 638641.

    • Search Google Scholar
    • Export Citation
  • 126.

    Tanwar GS, Khatri PC, Sengar GS, Kochar A, Kochar SK, Middha S, Tanwar G, Khatri N, Pakalapati D, Garg S, Das A, Kochar DK, 2011. Clinical profiles of 13 children with Plasmodium vivax cerebral malaria. Ann Trop Paediatr 31: 351356.

    • Search Google Scholar
    • Export Citation
  • 127.

    Suwanarusk R, Cooke BM, Dondorp AM, Silamut K, Sattabongkot J, White NJ, Udomsangpetch R, 2004. The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax. J Infect Dis 189: 190194.

    • Search Google Scholar
    • Export Citation
  • 128.

    Carvalho BO, Lopes SC, Nogueira PA, Orlandi PP, Bargieri DY, Blanco YC, Mamoni R, Leite JA, Rodrigues MM, Soares IS, Oliveira TR, Wunderlich G, Lacerda MV, del Portillo HA, Araujo MO, Russell B, Suwanarusk R, Snounou G, Renia L, Costa FT, 2010. On the cytoadhesion of Plasmodium vivax-infected erythrocytes. J Infect Dis 202: 638647.

    • Search Google Scholar
    • Export Citation
  • 129.

    del Portillo HA, Fernandez-Becerra C, Bowman S, Oliver K, Preuss M, Sanchez CP, Schneider NK, Villalobos JM, Rajandream MA, Harris D, Pereira da Silva LH, Barrell B, Lanzer M, 2001. A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax. Nature 410: 839842.

    • Search Google Scholar
    • Export Citation
  • 130.

    Fernandez-Becerra C, Pein O, de Oliveira TR, Yamamoto MM, Cassola AC, Rocha C, Soares IS, de Braganca Pereira CA, del Portillo HA, 2005. Variant proteins of Plasmodium vivax are not clonally expressed in natural infections. Mol Microbiol 58: 648658.

    • Search Google Scholar
    • Export Citation
  • 131.

    Bernabeu M, Lopez FJ, Ferrer M, Martin-Jaular L, Razaname A, Corradin G, Maier AG, Del Portillo HA, Fernandez-Becerra C, 2012. Functional analysis of Plasmodium vivax VIR proteins reveals different subcellular localizations and cytoadherence to the ICAM-1 endothelial receptor. Cell Microbiol 14: 386400.

    • Search Google Scholar
    • Export Citation
  • 132.

    Lacerda MV, Fragoso SC, Alecrim MG, Alexandre MA, Magalhaes BM, Siqueira AM, Ferreira LC, Araujo JR, Mourao MP, Ferrer M, Castillo P, Martin-Jaular L, Fernandez-Becerra C, del Portillo H, Ordi J, Alonso PL, Bassat Q, 2012. Postmortem characterization of patients with clinical diagnosis of Plasmodium vivax malaria: to what extent does this parasite kill? Clin Infect Dis 55: e67e74.

    • Search Google Scholar
    • Export Citation
  • 133.

    Valecha N, Pinto RG, Turner GD, Kumar A, Rodrigues S, Dubhashi NG, Rodrigues E, Banaulikar SS, Singh R, Dash AP, Baird JK, 2009. Histopathology of fatal respiratory distress caused by Plasmodium vivax malaria. Am J Trop Med Hyg 81: 758762.

    • Search Google Scholar
    • Export Citation
  • 134.

    Anstey NM, Russell B, Yeo TW, Price RN, 2009. The pathophysiology of vivax malaria. Trends Parasitol 25: 220227.

  • 135.

    Adams JH, Hudson DE, Torii M, Ward GE, Wellems TE, Aikawa M, Miller LH, 1990. The Duffy receptor family of Plasmodium knowlesi is located within the micronemes of invasive malaria merozoites. Cell 63: 141153.

    • Search Google Scholar
    • Export Citation
  • 136.

    Menard D, Barnadas C, Bouchier C, Henry-Halldin C, Gray LR, Ratsimbasoa A, Thonier V, Carod JF, Domarle O, Colin Y, Bertrand O, Picot J, King CL, Grimberg BT, Mercereau-Puijalon O, Zimmerman PA, 2010. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci USA 107: 59675971.

    • Search Google Scholar
    • Export Citation
  • 137.

    King CL, Adams JH, Xianli J, Grimberg BT, McHenry AM, Greenberg LJ, Siddiqui A, Howes RE, da Silva-Nunes M, Ferreira MU, Zimmerman PA, 2011. Fy(a)/Fy(b) antigen polymorphism in human erythrocyte Duffy antigen affects susceptibility to Plasmodium vivax malaria. Proc Natl Acad Sci USA 108: 2011320118.

    • Search Google Scholar
    • Export Citation
  • 138.

    Galinski MR, Medina CC, Ingravallo P, Barnwell JW, 1992. A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell 69: 12131226.

    • Search Google Scholar
    • Export Citation
  • 139.

    Menard D, Chan ER, Benedet C, Ratsimbasoa A, Kim S, Chim P, Do C, Witkowski B, Durand R, Thellier M, Severini C, Legrand E, Musset L, Nour BY, Mercereau-Puijalon O, Serre D, Zimmerman PA, 2013. Whole genome sequencing of field isolates reveals a common duplication of the Duffy binding protein gene in Malagasy Plasmodium vivax strains. PLoS Negl Trop Dis 7: e2489.

    • Search Google Scholar
    • Export Citation
  • 140.

    Quispe AM, Pozo E, Guerrero E, Durand S, Baldeviano GC, Edgel KA, Graf PC, Lescano AG, 2014. Plasmodium vivax hospitalizations in a monoendemic malaria region: severe vivax malaria? Am J Trop Med Hyg 91: 1117.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6881 799 82
PDF Downloads 1183 451 35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Investigating the Pathogenesis of Severe Malaria: A Multidisciplinary and Cross-Geographical Approach

Samuel C. WassmerDivision of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York; Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Departments of Chemistry and Global Health, University of Washington, Seattle, Washington; Department of Internal Medicine, Ispat General Hospital, Orissa, India; Caucaseco Scientific Research Center, Cali, Colombia; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Seattle Biomedical Research Institute, Seattle, Washington; Department of Global Health, University of Washington, Seattle, Washington

Search for other papers by Samuel C. Wassmer in
Current site
Google Scholar
PubMed
Close
,
Terrie E. TaylorDivision of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York; Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Departments of Chemistry and Global Health, University of Washington, Seattle, Washington; Department of Internal Medicine, Ispat General Hospital, Orissa, India; Caucaseco Scientific Research Center, Cali, Colombia; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Seattle Biomedical Research Institute, Seattle, Washington; Department of Global Health, University of Washington, Seattle, Washington

Search for other papers by Terrie E. Taylor in
Current site
Google Scholar
PubMed
Close
,
Pradipsinh K. RathodDivision of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York; Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Departments of Chemistry and Global Health, University of Washington, Seattle, Washington; Department of Internal Medicine, Ispat General Hospital, Orissa, India; Caucaseco Scientific Research Center, Cali, Colombia; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Seattle Biomedical Research Institute, Seattle, Washington; Department of Global Health, University of Washington, Seattle, Washington

Search for other papers by Pradipsinh K. Rathod in
Current site
Google Scholar
PubMed
Close
,
Saroj K. MishraDivision of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York; Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Departments of Chemistry and Global Health, University of Washington, Seattle, Washington; Department of Internal Medicine, Ispat General Hospital, Orissa, India; Caucaseco Scientific Research Center, Cali, Colombia; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Seattle Biomedical Research Institute, Seattle, Washington; Department of Global Health, University of Washington, Seattle, Washington

Search for other papers by Saroj K. Mishra in
Current site
Google Scholar
PubMed
Close
,
Sanjib MohantyDivision of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York; Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Departments of Chemistry and Global Health, University of Washington, Seattle, Washington; Department of Internal Medicine, Ispat General Hospital, Orissa, India; Caucaseco Scientific Research Center, Cali, Colombia; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Seattle Biomedical Research Institute, Seattle, Washington; Department of Global Health, University of Washington, Seattle, Washington

Search for other papers by Sanjib Mohanty in
Current site
Google Scholar
PubMed
Close
,
Myriam Arevalo-HerreraDivision of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York; Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Departments of Chemistry and Global Health, University of Washington, Seattle, Washington; Department of Internal Medicine, Ispat General Hospital, Orissa, India; Caucaseco Scientific Research Center, Cali, Colombia; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Seattle Biomedical Research Institute, Seattle, Washington; Department of Global Health, University of Washington, Seattle, Washington

Search for other papers by Myriam Arevalo-Herrera in
Current site
Google Scholar
PubMed
Close
,
Manoj T. DuraisinghDivision of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York; Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Departments of Chemistry and Global Health, University of Washington, Seattle, Washington; Department of Internal Medicine, Ispat General Hospital, Orissa, India; Caucaseco Scientific Research Center, Cali, Colombia; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Seattle Biomedical Research Institute, Seattle, Washington; Department of Global Health, University of Washington, Seattle, Washington

Search for other papers by Manoj T. Duraisingh in
Current site
Google Scholar
PubMed
Close
, and
Joseph D. SmithDivision of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York; Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Departments of Chemistry and Global Health, University of Washington, Seattle, Washington; Department of Internal Medicine, Ispat General Hospital, Orissa, India; Caucaseco Scientific Research Center, Cali, Colombia; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Seattle Biomedical Research Institute, Seattle, Washington; Department of Global Health, University of Washington, Seattle, Washington

Search for other papers by Joseph D. Smith in
Current site
Google Scholar
PubMed
Close
View More View Less

More than a century after the discovery of Plasmodium spp. parasites, the pathogenesis of severe malaria is still not well understood. The majority of malaria cases are caused by Plasmodium falciparum and Plasmodium vivax, which differ in virulence, red blood cell tropism, cytoadhesion of infected erythrocytes, and dormant liver hypnozoite stages. Cerebral malaria coma is one of the most severe manifestations of P. falciparum infection. Insights into its complex pathophysiology are emerging through a combination of autopsy, neuroimaging, parasite binding, and endothelial characterizations. Nevertheless, important questions remain regarding why some patients develop life-threatening conditions while the majority of P. falciparum-infected individuals do not, and why clinical presentations differ between children and adults. For P. vivax, there is renewed recognition of severe malaria, but an understanding of the factors influencing disease severity is limited and remains an important research topic. Shedding light on the underlying disease mechanisms will be necessary to implement effective diagnostic tools for identifying and classifying severe malaria syndromes and developing new therapeutic approaches for severe disease. This review highlights progress and outstanding questions in severe malaria pathophysiology and summarizes key areas of pathogenesis research within the International Centers of Excellence for Malaria Research program.

Introduction

Malaria is a major global infectious disease caused by parasitic protozoans of the genus Plasmodium. Of the five Plasmodium species that infect humans, Plasmodium falciparum and Plasmodium vivax cause the majority of cases, and P. falciparum is the most virulent and responsible for the majority of deaths.1 Despite recent reductions in the overall malaria case incidence, malaria remains a leading cause of morbidity and mortality in the developing world. In 2012, there were an estimated 207 million cases of malaria and over 600,000 deaths.1 The majority of malaria deaths (90%) occur in children in Africa, where falciparum malaria accounts for as many as one in six childhood deaths and is the biggest killer of African children between the ages of 1 and 4 years.2,3 Outside Africa, there are a variety of transmission settings where P. falciparum, P. vivax, or both are present. In lower transmission settings in South America, India, and southeast Asia, adult populations are at higher risk for severe malaria.

Malaria is a complex disease, and the spectrum of disease manifestations differs between children and adults.4 Symptoms can range from none, in individuals with asymptomatic parasitemia, to mild, in patients with undifferentiated fever, to severe, in patients with life-threatening anemia, metabolic acidosis, cerebral malaria (CM), and multiorgan system involvement.5 Only a small minority of infections, less than 1–2%, leads to severe malaria.6 Because pathogenetic mechanisms are complex and poorly understood, current treatment primarily relies on antimalarial drugs and supportive care. Here we focus on recent advancements in understanding the molecular pathogenesis of CM and the variable presentations between children and adults.

Several pathogenetic mechanisms have been proposed for CM including mechanical microvascular obstruction by sequestered infected erythrocytes (IEs),7 activation of immune cells and release of pro-inflammatory cytokines,8,9 endothelial dysfunction,10 dysregulation of coagulation pathways,11,12 blood–brain barrier (BBB) permeability,13 and brain swelling.14 Furthermore, autopsy studies have subdivided pediatric cases into two different groups based on histopathological patterns. The CM1 group has sequestration only, while CM2 group has sequestration plus vascular pathology (ring hemorrhages, fibrin-platelet thrombi, and monocytes).15,16 Ring hemorrhages and cerebral thrombosis are also described in a proportion of adult cases,17 but whether there is an equivalent CM1/CM2 dichotomy in adults is less clear. Recent findings implicate a specific subset of parasites that adhere to endothelial protein C receptor (EPCR) in severe childhood malaria.18 As EPCR plays a key role in regulating coagulation and endothelial cytoprotective and barrier properties,19 this raises the possibility there may be linkages between IE cytoadhesion and microvascular complications in CM.20 However, the precise molecular processes that account for the pathophysiological differences between CM1, CM2, and adult CM are poorly understood. Elucidating key pathogenetic mechanisms in CM and severe malaria may suggest new treatment options to improve patient outcomes.

Unlike P. falciparum, P. vivax rarely causes severe disease in healthy travelers and is a less deadly parasite.21 Factors that may contribute to the lower virulence are that P. vivax only infects reticulocytes and the absence of the cytoadhesion protein family responsible for sequestration in P. falciparum infections.21,22 These differences limit the blood-stage parasite burden and spectrum of cytoadhesion-based complications. Another distinction is that P. vivax has dormant liver hypnozoite stages, which can reactivate and lead to blood-stage relapses. Relapses contribute to vivax morbidity, but the mechanisms leading to severe vivax disease remain to be elucidated. This review covers recent findings on the pathological pathways in pediatric and adult CM, as well as severe malaria cases in low-transmission settings in South America and India because of P. vivax infections, highlighting progress and outstanding questions in severe malaria pathophysiology in the context of the pathogenesis research activities within the International Centers of Excellence for Malaria Research (ICEMR) program.

Severe Falciparum Malaria in Children and Adults

The clinical presentations of severe falciparum malaria differ between children and adults.5 In particular, adults have a higher mortality rate and more multiorgan system involvement than children. A recent large multicenter comparison of artesunate versus quinine in the treatment of severe malaria in adults and children reported adult and pediatric mortality rates of 18.5%23 and 9.7%, respectively.24 The major organs affected in adult severe malaria are brain (CM), lungs (acute respiratory distress syndrome [ARDS]), liver (jaundice), and kidneys (acute renal failure) (Figure 1). Although the overall mortality of adult CM is about 15–20%, the risk of death depends on associated vital organ dysfunction and is increased 3-fold in the presence of acidosis and renal failure.25 In children, the three major disease complications are CM, severe anemia, and acidosis, but ARDS and renal failure are rare (Figure 1).26 Although the three disease syndromes can occur singly or as overlapping syndromes, severe malaria anemia commonly affects younger children, and CM and metabolic acidosis are more commonly found in slightly older children.27 CM and metabolic acidosis are each associated with high mortality rates in children (12% and 14%, respectively), and the presence of both increases the risk of death.28 The severity of disease may be exacerbated by both higher parasite burdens and the tissue-specific patterns of IE sequestration. Thus, there is significant research effort to understand factors that contribute to parasite blood-stage multiplication potential and cerebral homing of IEs.

Figure 1.