• 1.

    Henderson JR, Karabatsos N, Bourke AT, Wallis RC, Taylor RM , 1962. A survey for arthropod-borne viruses in south-central Florida. Am J Trop Med Hyg 11: 800810.

    • Search Google Scholar
    • Export Citation
  • 2.

    Work TH , 1964. Serological evidence of arbovirus infection in the Seminole Indians of southern Florida. Science 145: 270272.

  • 3.

    Chamberlain RW, Sudia WD, Coleman PH, Work TH , 1964. Venezuelan equine encephalitis virus from south Florida. Science 145: 272274.

  • 4.

    Bond JO, Hammon WM, Lewis AL, Sather GE, Taylor DJ , 1966. California group arboviruses in Florida and report of a new strain, Keystone virus. Public Health Rep 81: 607613.

    • Search Google Scholar
    • Export Citation
  • 5.

    Weaver SC, Bellew LA, Rico-Hesse R , 1992. Phylogenetic analysis of alphaviruses in the Venezuelan equine encephalitis complex and identification of the source of epizootic viruses. Virology 191: 282290.

    • Search Google Scholar
    • Export Citation
  • 6.

    Henderson BE, Calisher CH, Coleman PH, Fields BN, Work TH , 1969. Gumbo Limbo, a new group C arbovirus from the Florida Everglades. Am J Epidemiol 89: 227231.

    • Search Google Scholar
    • Export Citation
  • 7.

    Chamberlain RW, Sudia WD, Work TH, Coleman PH, Newhouse VF, Johnston JG Jr , 1969. Arbovirus studies in south Florida, with emphasis on Venezuelan equine encephalomyelitis virus. Am J Epidemiol 89: 197210.

    • Search Google Scholar
    • Export Citation
  • 8.

    Fields BN, Henderson BE, Coleman PH, Work TH , 1969. Pahayokee and Shark River, two new arboviruses related to Patois and Zegla from the Florida Everglades. Am J Epidemiol 89: 222226.

    • Search Google Scholar
    • Export Citation
  • 9.

    Coleman PH, Ryder S, Work TH , 1969. Mahogany hammock virus, a new Guama group arbovirus from the Florida Everglades. Am J Epidemiol 89: 217221.

    • Search Google Scholar
    • Export Citation
  • 10.

    Chamberlain RW, Sudia WD, Coleman PH , 1969. Isolations of an arbovirus of the Bunyamwera group (Tensaw virus) from mosquitoes in the southeastern United States, 1960–1963. Am J Trop Med Hyg 18: 9297.

    • Search Google Scholar
    • Export Citation
  • 11.

    Coleman PH , 1969. Tensaw virus, a new member of the Bunyamwera arbovirus group from the southern United States. Am J Trop Med Hyg 18: 8191.

    • Search Google Scholar
    • Export Citation
  • 12.

    Calisher CH, Murphy FA, France JK, Lazuick JS, Muth DJ, Steck F, Lindsey HS, Bauer SP, Buff EE, Schneider NJ , 1980. Everglades virus infection in man, 1975. South Med J 73: 1548.

    • Search Google Scholar
    • Export Citation
  • 13.

    Lednicky JA, White SK, Stephenson CJ, Cherabuddi K, Loeb JC, Moussatche N, Lednicky A, Morris JG Jr , 2018. Keystone virus isolated from a Florida teenager with rash and subjective fever: another endemic arbovirus in the southeastern United States. Clin Infect Dis 68: 143145.

    • Search Google Scholar
    • Export Citation
  • 14.

    Day JF , 2001. Predicting St. Louis encephalitis virus lessons from recent, and not so recent, outbreaks. Annu Rev Entomol 46: 111138.

    • Search Google Scholar
    • Export Citation
  • 15.

    Blackmore CG, Stark LM, Jeter WC, Oliveri RL, Brooks RG, Conti LA, Wiersma ST , 2003. Surveillance results from the first West Nile virus transmission season in Florida, 2001. Am J Trop Med Hyg 69: 141150.

    • Search Google Scholar
    • Export Citation
  • 16.

    Mutebi JP, Hughes HR, Burkhalter KL, Kothera L, Vasquez C, Kenney JL , 2018. Zika virus MB16-23 in mosquitoes, Miami-Dade County, Florida, USA, 2016. Emerg Infect Dis 24: 808810.

    • Search Google Scholar
    • Export Citation
  • 17.

    Graham AS, Pruszynski CA, Hribar LJ, DeMay DJ, Tambasco AN, Hartley AE, Fussell EM, Michael SF, Isern S , 2011. Mosquito-associated dengue virus, Key West, Florida, USA, 2010. Emerg Infect Dis 17: 20742075.

    • Search Google Scholar
    • Export Citation
  • 18.

    Kuehn BM , 2014. Chikungunya virus transmission found in the United States: US health authorities brace for wider spread. JAMA 312: 776777.

    • Search Google Scholar
    • Export Citation
  • 19.

    Weaver SC, Ferro C, Barrera R, Boshell J, Navarro J-C , 2004. Venezuelan equine encephalitis. Annu Rev Entomol 49: 141174.

  • 20.

    Torres-Gutierrez C, Sallum MA , 2015. Catolog of the subgenus Melanoconion of Culex (Diptera: Culicidae) for South America. Zootaxa 4028: 150.

    • Search Google Scholar
    • Export Citation
  • 21.

    Sallum MA, Forattini OP , 1996. Revision of the Spissipes section of Culex (Melanoconion) (Diptera: Culicidae). J Am Mosq Control Assoc 12: 517600.

    • Search Google Scholar
    • Export Citation
  • 22.

    Sirivanakarn S , 1982. A review of the systematics and proposed scheme of internal classification of the New World subgenus Melanoconion of Culex (Diptera: Culicidae). Mosq Syst 14: 265333.

    • Search Google Scholar
    • Export Citation
  • 23.

    Darsie RF, Morris CD , 1998. Keys to the adult females and fourth instar larvae of the mosquitoes of Florida (Diptera, Culicidae). Bull Fla Mosq Control Assoc 1: 1156.

    • Search Google Scholar
    • Export Citation
  • 24.

    Blosser EM, Burkett-Cadena ND , 2017. Culex (Melanoconion) panocossa from peninsular Florida, USA. Acta Trop 167: 5963.

  • 25.

    Coffey LL, Crawford C, Dee J, Miller R, Freier J, Weaver SC , 2006. Serologic evidence of widespread Everglades virus activity in dogs, Florida. Emerg Infect Dis 12: 18731879.

    • Search Google Scholar
    • Export Citation
  • 26.

    Ehrenkranz NJ, Sinclair MC, Buff E, Lyman DO , 1970. The natural occurrence of Venezuelan equine encephalitis in the United States. N Engl J Med 282: 298302.

    • Search Google Scholar
    • Export Citation
  • 27.

    Ventura AK, Buff EE, Ehrenkranz NJ , 1974. Human Venezuelan equine encephalitis virus infection in Florida. Am J Trop Med Hyg 23: 507512.

  • 28.

    Hoyer IJ, Acevedo C, Wiggins K, Alto BW, Burkett-Cadena ND , 2019. Patterns of abundance, host use, and Everglades virus infection in Culex (Melanoconion) cedecei mosquitoes, Florida, USA. Emerg Infect Dis 25: 10931100.

    • Search Google Scholar
    • Export Citation
  • 29.

    Edman JD , 1979. Host-feeding patterns of Florida mosquitoes (Diptera: Culicidae) VI. Culex (Melanoconion). J Med Entomol 15: 521525.

    • Search Google Scholar
    • Export Citation
  • 30.

    Bigler WJ, Lewis AL, Wellings FM , 1974. Experimental infection of the cotton mouse (Peromyscus gossypinus) with Venezuelan equine encephalomyelitis virus. Am J Trop Med Hyg 23: 11851188.

    • Search Google Scholar
    • Export Citation
  • 31.

    Coffey LL, Carrara AS, Paessler S, Haynie ML, Bradley RD, Tesh RB, Weaver SC , 2004. Experimental Everglades virus infection of cotton rats (Sigmodon hispidus). Emerg Infect Dis 10: 21822188.

    • Search Google Scholar
    • Export Citation
  • 32.

    Carrara AS, Coffey LL, Aguilar PV, Moncayo AC, Da Rosa AP, Nunes MR, Tesh RB, Weaver SC , 2007. Venezuelan equine encephalitis virus infection of cotton rats. Emerg Infect Dis 13: 11581165.

    • Search Google Scholar
    • Export Citation
  • 33.

    Weaver SC, Scherer WF, Taylor CA, Castello DA, Cupp EW , 1986. Laboratory vector competence of Culex (Melanoconion) cedecei for sympatric and allopatric Venezuelan equine encephalomyelitis viruses. Am J Trop Med Hyg 35: 619623.

    • Search Google Scholar
    • Export Citation
  • 34.

    Lord RD, Calisher CH, Sudia WD, Work TH , 1973. Ecological investigation of vertebrate hosts of Venezuelan equine encephalomyelitis virus in south Florida. Am J Trop Med Hyg 22: 116123.

    • Search Google Scholar
    • Export Citation
  • 35.

    May LP, Watts SL, Maruniak JE , 2014. Molecular survey for mosquito-transmitted viruses: detection of Tensaw virus in north central Florida mosquito populations. J Am Mosq Control Assoc 30: 6164.

    • Search Google Scholar
    • Export Citation
  • 36.

    Calisher CH, Francy DB, Smith GC, Muth DJ, Lazuick JS, Karabatsos N, Jakob WL, McLean RG , 1986. Distribution of Bunyamwera serogroup viruses in North America, 1956–1984. Am J Trop Med Hyg 35: 429443.

    • Search Google Scholar
    • Export Citation
  • 37.

    Wellings FM, Lewis AL, Pierce LV , 1972. Agents encountered during arboviral ecological studies: Tampa Bay area, Florida, 1963 to 1970. Am J Trop Med Hyg 21: 201213.

    • Search Google Scholar
    • Export Citation
  • 38.

    Wozniak A, Dowda HE, Tolson MW, Karabatsos N, Vaughan DR, Turner PE, Ortiz DI, Wills W , 2001. Arbovirus surveillance in South Carolina, 1996–98. J Am Mosq Control Assoc 17: 7378.

    • Search Google Scholar
    • Export Citation
  • 39.

    Ortiz DI, Wozniak A, Tolson MW, Turner PE , 2005. Arbovirus circulation, temporal distribution, and abundance of mosquito species in two Carolina bay habitats. Vector Borne Zoonotic Dis 5: 2032.

    • Search Google Scholar
    • Export Citation
  • 40.

    Karabatsos N , 1985. International Catalogue of Arboviruses Including Certain Other Viruses of Vertebrates. San Antonio, TX: American Society of Tropical Medicine and Hygiene.

    • Search Google Scholar
    • Export Citation
  • 41.

    Bigler WJ, Lassing E, Buff E, Lewis AL, Hoff GL , 1975. Arbovirus surveillance in Florida: wild vertebrate studies 1965–1974. J Wildl Dis 11: 348356.

    • Search Google Scholar
    • Export Citation
  • 42.

    Sahu SP, Pedersen DD, Ridpath HD, Ostlund EN, Schmitt BJ, Alstad DA , 2002. Serologic survey of cattle in the northeastern and north central United States, Virginia, Alaska, and Hawaii for antibodies to Cache Valley and antigenically related viruses (Bunyamwera serogroup virus). Am J Trop Med Hyg 67: 119122.

    • Search Google Scholar
    • Export Citation
  • 43.

    Nagayama JN, Komar N, Levine JF, Apperson CS , 2001. Bunyavirus infections in North Carolina white-tailed deer (Odocoileus virginianus). Vector Borne Zoonotic Dis 1: 169171.

    • Search Google Scholar
    • Export Citation
  • 44.

    Edman JD , 1971. Host-feeding patterns of Florida mosquitoes I. Aedes, Anopheles, Coquillettidia, Mansonia and Psorophora. J Med Entomol 8: 687695.

    • Search Google Scholar
    • Export Citation
  • 45.

    Eldridge B, Service MWThe Encyclopedia of Arthropod-Transmitted Infections. New York, NY: CABI Publishing, 485487.

  • 46.

    McGowan JE, Bryan JA, Gregg MB , 1973. Surveillance of arboviral encephalitis in the United States, 1955–1971. Am J Epidemiol 97: 199207.

    • Search Google Scholar
    • Export Citation
  • 47.

    Castro KG, Lieb S, Jaffe HW, Narkunas JP, Calisher CH, Bush TJ, Witte JJ , 1988. Transmission of HIV in Belle Glade, Florida: lessons for other communities in the United States. Science 239: 193197.

    • Search Google Scholar
    • Export Citation
  • 48.

    Calisher CH, Lazuick JS, Lieb S, Monath TP, Castro KG , 1988. Human infections with Tensaw virus in south Florida: evidence that Tensaw virus subtypes stimulate the production of antibodies reactive with closely related Bunyamwera serogroup viruses. Am J Trop Med Hyg 39: 117122.

    • Search Google Scholar
    • Export Citation
  • 49.

    Mitchell CJ, Morris CD, Smith GC, Karabatsos N, Vanlandingham D, Cody E , 1996. Arboviruses associated with mosquitoes from nine Florida counties during 1993. J Am Mosq Control Assoc 12: 255262.

    • Search Google Scholar
    • Export Citation
  • 50.

    Scherer WF, Anderson K, Dickerman RW, Ordonez JV , 1972. Studies of Patois group arboviruses in Mexico, Guatemala, Honduras, and British Honduras. Am J Trop Med Hyg 21: 194200.

    • Search Google Scholar
    • Export Citation
  • 51.

    Hontz RD et al.2015. Itaya virus, a novel Orthobunyavirus associated with human febrile illness, Peru. Emerg Infect Dis 21: 781788.

  • 52.

    Nunes MR, Travassos da Rosa AP, Weaver SC, Tesh RB, Vasconcelos PF , 2005. Molecular epidemiology of group C viruses (Bunyaviridae, Orthobunyavirus) isolated in the Americas. J Virol 79: 1056110570.

    • Search Google Scholar
    • Export Citation
  • 53.

    Ushijima H, Clerx-Van Haaster CM, Bishop DH , 1981. Analyses of Patois group bunyaviruses: evidence for naturally occurring recombinant bunyaviruses and existence of immune precipitable and nonprecipitable nonvirion proteins induced in bunyavirus-infected cells. Virology 110: 318332.

    • Search Google Scholar
    • Export Citation
  • 54.

    Watts DM, Bailey CL, Roberts NT, Tammariello RF, Dalrymple JM, Clark GC , 1988. Maintenance and transmission of Keystone virus by Aedes atlanticus (Diptera: Culicidae) and the gray squirrel in the Pocomoke Cypress Swamp, Maryland. J Med Entomol 25: 493500.

    • Search Google Scholar
    • Export Citation
  • 55.

    Grunwald M, Stone MEverglades. Gainesville, FL: University Press of Florida, XIV.

  • 56.

    Graham B, Stone MEverglades. Gainesville, FL: University Press of Florida, XVIII.

  • 57.

    Vaheri A, Vapalahti O, Plyusnin A, Elliott RMBunyaviridae Molecular and Cellular Biology. Norfolk, United Kingdom: Caister Academic Press, 193206.

    • Search Google Scholar
    • Export Citation
  • 58.

    Darsie RJ Jr, Ward RA , 2005. Identification and Geographic Distribution of Mosquitoes of North America, North of Mexico. Gainesville, FL: University Press of Florida.

    • Search Google Scholar
    • Export Citation
  • 59.

    Knight JW, Haeger JS , 1971. Key to adults of the Culex subgenera Melanoconion and Mochlostyrax of eastern North America. J Med Entomol 8: 551555.

    • Search Google Scholar
    • Export Citation
  • 60.

    Tang Y, Hapip AC, Liu B, Fang CT , 2006. Highly sensitive TaqMan RT-PCR assay for detection and quantification of both lineages of West Nile virus RNA. J Clin Virol 36: 177182.

    • Search Google Scholar
    • Export Citation
  • 61.

    Dunn EF, Pritlove DC, Elliott RM , 1994. The S RNA genome segments of Batai, Cache Valley, Guaroa, Kairi, Lumbo, Main Drain and Northway bunyaviruses: sequence determination and analysis. J Gen Virol 75: 597608.

    • Search Google Scholar
    • Export Citation
  • 62.

    Armstrong PM, Andreadis TG , 2006. A new genetic variant of La Crosse virus (Bunyaviridae) isolated from New England. Am J Trop Med Hyg 75: 491496.

    • Search Google Scholar
    • Export Citation
  • 63.

    Biggerstaff BJ , 2006. PooledInfRate. Version 3.0: A Microsoft Excel Add-In to Compute Prevalence Estimates from Pooled Samples. Fort Collins, CO: Centers for Disease Control and Prevention.

    • Search Google Scholar
    • Export Citation
  • 64.

    Hardy JL, Houk EJ, Kramer LD, Reeves WC , 1983. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 28: 229262.

    • Search Google Scholar
    • Export Citation
  • 65.

    Turell MJ, Dohm DJ, Sardelis MR, Oguinn ML, Andreadis TG, Blow JA , 2005. An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 42: 5762.

    • Search Google Scholar
    • Export Citation
  • 66.

    Sudia WD, Coleman PH, Chamberlain RW , 1969. Experimental vector-host studies with Tensaw virus, a newly recognized member of the Bunyamwera arbovirus group. Am J Trop Med Hyg 18: 98102.

    • Search Google Scholar
    • Export Citation
  • 67.

    Sudia WD, Newhouse VF, Calisher CH, Chamberlain RW , 1971. California group arboviruses: isolations from mosquitoes in North America. Mosq News 31: 576600.

    • Search Google Scholar
    • Export Citation
  • 68.

    Day JF, Tabachnick WJ, Smartt CT , 2015. Factors that influence the transmission of West Nile virus in Florida. J Med Entomol 52: 743754.

  • 69.

    Centers for Disease Control , 2019. West Nile Virus Maps. Available at: wwwn.cdc.gov/arbonet/maps/adb_diseases_map/index.html.

  • 70.

    Vitek CJ, Richards SL, Mores CN, Day JF, Lord CC , 2008. Arbovirus transmission by Culex nigripalpus in Florida, 2005. J Med Entomol 45: 483493.

    • Search Google Scholar
    • Export Citation
  • 71.

    Godsey MS Jr et al.2005 West Nile virus epizootiology in the southeastern United States, 2001. Vector Borne Zoonotic Dis. 5: 8289.

  • 72.

    Kramer LD, Styer LM, Ebel GD , 2008. A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol 53: 6181.

  • 73.

    Andreadis TG , 2012. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America. J Am Mosq Control Assoc 28: 137151.

    • Search Google Scholar
    • Export Citation
  • 74.

    Simpson JE, Hurtado PJ, Medlock J, Molaei G, Andreadis TG, Galvani AP, Diuk-Wasser MA , 2012. Vector host-feeding preferences drive transmission of multi-host pathogens: West Nile virus as a model system. Proc Biol Sci 279: 925933.

    • Search Google Scholar
    • Export Citation
  • 75.

    Blosser EM, Stenn T, Acevedo C, Burkett-Cadena ND , 2016. Host use and seasonality of Culex (Melanoconion) iolambdis (Diptera: Culicidae) from eastern Florida, USA. Acta Trop 164: 352359.

    • Search Google Scholar
    • Export Citation
  • 76.

    Egizi A, Martinsen ES, Vuong H, Zimmerman KI, Faraji A, Fonseca DM , 2018. Using bloodmeal analysis to assess disease risk to wildlife at the new northern limit of a mosquito species. EcoHealth 15: 543554.

    • Search Google Scholar
    • Export Citation
  • 77.

    Reeves LE, Hoyer I, Acevedo C, Burkett-Cadena ND , 2019. Host Associations of Culex (Melanoconion) atratus (Diptera: Culicidae) and Culex (Melanoconion) pilosus from Florida, USA. Insects 10: 239. doi: 10.3390/insects10080239.

    • Search Google Scholar
    • Export Citation
  • 78.

    Bingham AM, Burkett-Cadena ND, Hassan HK, McClure CJ, Unnasch TR , 2014. Field investigations of winter transmission of eastern equine encephalitis virus in Florida. Am J Trop Med Hyg 91: 685693.

    • Search Google Scholar
    • Export Citation
  • 79.

    Burkett-Cadena ND, Graham SP, Hassan HK, Guyer C, Eubanks MD, Katholi CR, Unnasch TR , 2008. Blood feeding patterns of potential arbovirus vectors of the genus Culex targeting ectothermic hosts. Am J Trop Med Hyg 79: 809815.

    • Search Google Scholar
    • Export Citation
  • 80.

    Scherer WF, Dickerman RW, Diaz-Najera A, Ward BA, Miller MH, Schaffer PA , 1971. Ecologic studies of Venezuelan encephalitis virus in southeastern Mexico. 3. Infection of mosquitoes. Am J Trop Med Hyg 20: 969979.

    • Search Google Scholar
    • Export Citation
  • 81.

    Coffey LL, Weaver SC , 2005. Susceptibility of Ochlerotatus taeniorhynchus and Culex nigripalpus for Everglades virus. Am J Trop Med Hyg 73: 1116.

    • Search Google Scholar
    • Export Citation
  • 82.

    Elliott RM, Blakqori G, Plyusnin A, Elliott RMBunyamviridae Molecular and Cellular Biology. Norfolk, United Kingdom: Caister Academic Press, 139.

    • Search Google Scholar
    • Export Citation
  • 83.

    Calisher CH, Sever JL , 1995. Are North American Bunyamwera serogroup viruses etiologic agents of human congenital defects of the central nervous system? Emerg Infect Dis 1: 147151.

    • Search Google Scholar
    • Export Citation
  • 84.

    Pond WL, Ehrenkranz NJ, Danauskas JX, Davies JE , 1966. Arboviruses and human disease in South Florida. Am J Trop Med Hyg 15: 205210.

Past two years Past Year Past 30 Days
Abstract Views 3476 3476 34
Full Text Views 40 40 1
PDF Downloads 54 54 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Seasonal Dynamics of Mosquito-Borne Viruses in the Southwestern Florida Everglades, 2016, 2017

View More View Less
  • 1 Department of Entomology and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut;
  • | 2 Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut;
  • | 3 Department of Environmental Sciences and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut;
  • | 4 Department of Plant Pathology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut;
  • | 5 Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
Restricted access

ABSTRACT.

Mosquitoes were collected for 12 consecutive months beginning June 2016, from 11 locations in the Florida Everglades, Collier County, and tested for viruses by isolation in Vero cells and subsequent identification. One species complex and 31 species of mosquitoes were identified from 668,809 specimens. Ochlerotatus taeniorhynchus comprised 72.2% of the collection. Other notable species were Anopheles crucians complex, Culex nigripalpus, Cx. erraticus, and Cx. cedecei. Seven species of virus were identified from 110 isolations: Everglades, Gumbo Limbo, Mahogany Hammock, Pahayokee, Shark River, Tensaw, and West Nile viruses. Everglades, West Nile, Tensaw, and Mahogany Hammock viruses were most frequently isolated. Largest numbers of viruses were identified from Cx. cedecei, Cx. nigripalpus, and An. crucians complex. Five species of virus were isolated from Cx. cedecei. Viruses were isolated from mangrove, cypress swamp, hardwood hammock, and sawgrass habitats. West Nile virus was isolated August through October when Cx. nigripalpus was most abundant. Everglades virus was the most frequently isolated virus from nine species of mosquitoes collected from June through August. Tensaw virus was isolated primarily from Anopheles species. Isolations were made in July, August, January, February, and April, suggesting that this virus may be present in host-seeking mosquitoes throughout the year. Mahogany Hammock, Shark River, Gumbo Limbo, and Pahayokee viruses were isolated primarily from Cx. cedecei from June through December. Shotgun metagenomic sequencing was used to document that seven pools of Cx. cedecei were infected with two arboviruses. As communities expand into the Everglades, more humans will become exposed to arboviruses.

    • Supplemental Materials (PDF 50 KB)

Author Notes

Address correspondence to John F. Anderson, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06511-1106. E-mail: john.f.anderson@ct.gov

Authors’ addresses: John Anderson, Department of Entomology and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Ct, E-mail: john.f.anderson@ct.gov. Durland Fish, Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, E-mail: durland.fish@yale.edu. Philip M. Armstrong, Michael J. Misencik, Angela Bransfield, and Theodore G. Andreadis, Department of Environmental Sciences and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT, E-mails: philip.armstrong@ct.gov, michael.misencik@ct.gov, angela.bransfield@ct.gov, and theodore.andreadis@ct.gov. Francis J. Ferrandino, Department of Plant Pathology, The Connecticut Agricultural Experiment Station, New Haven, CT, E-mail: ferrandino@comcast.net. Mark D. Stenglein and Marylee L. Kapuscinski, Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, E-mails: mark.stenglein@colostate.edu and marylee.layton@colostate.edu.

Save