• 1.

    World Health Organization , 2019. Global Tuberculosis Report 2019. Geneva, Switzerland: WHO. Available at: https://www.who.int/tb/publications/global_report/en/. Accesed August 10, 2020.

  • 2.

    Guio H, Tarazona D, Galarza M, Borda V, Curitomay R , 2014. Genome analysis of 17 extensively drug-resistant strains reveals new potential mutations for resistance. Genome Announc 2: e00759-14.

    • Search Google Scholar
    • Export Citation
  • 3.

    Griffith DE , 2010. Nontuberculous mycobacterial lung disease. Curr Opin Infect Dis 23: 185190.

  • 4.

    Lopez-Roa P et al.2020. Epidemiology of non-tuberculous mycobacteria isolated from clinical specimens in Madrid, Spain, from 2013 to 2017. Eur J Clin Microbiol Infect Dis 39: 10891094.

    • Search Google Scholar
    • Export Citation
  • 5.

    Thomson RM , NTM working group at Queensland TB Control Centre and Queensland Mycobacterial Reference Laboratory, 2010. Changing epidemiology of pulmonary nontuberculous mycobacteria infections. Emerg Infect Dis 16: 15761583.

    • Search Google Scholar
    • Export Citation
  • 6.

    Victoria J, Botello AM, 2018. Ampliando el acceso a servicios de salud integrales, de calidad, centrados en las personas para el VIH y TB en Panama 2018. Organización Panamericana de la Salud 6: 3640.

  • 7.

    Whang J, Lee BS, Choi GE, Cho SN, Kil PY, Collins MT, Shin SJ , 2011. Polymerase chain reaction-restriction fragment length polymorphism of the rpoB gene for identification of Mycobacterium avium subsp. paratuberculosis and differentiation of Mycobacterium avium subspecies. Diagn Microbiol Infect Dis 70: 6571.

    • Search Google Scholar
    • Export Citation
  • 8.

    Weerasekera DK, Magana-Arachchi DN, Madegedara D, Dissanayake N , 2014. Polymerase chain reaction - restriction fragment length polymorphism analysis for the differentiation of mycobacterial species in bronchial washings. Ceylon Med J 59: 7983.

    • Search Google Scholar
    • Export Citation
  • 9.

    Sinha P, Gupta A, Prakash P, Anupurba S, Tripathi R, Srivastava GN , 2016. Differentiation of Mycobacterium tuberculosis complex from non-tubercular mycobacteria by nested multiplex PCR targeting IS6110, MTP40 and 32kD alpha antigen encoding gene fragments. BMC Infect Dis 16: 123.

    • Search Google Scholar
    • Export Citation
  • 10.

    Supply P et al.2006. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44: 44984510.

    • Search Google Scholar
    • Export Citation
  • 11.

    Carniel F, Dalla Costa ER, Lima-Bello G, Martins C, Scherer LC, Rossetti ML , 2014. Use of conventional PCR and smear microscopy to diagnose pulmonary tuberculosis in the Amazonian rainforest area. Braz J Med Biol Res 47: 10161020.

    • Search Google Scholar
    • Export Citation
  • 12.

    van Soolingen D, Hermans PW, de Haas PE, Soll DR, van Embden JD , 1991. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol 29: 25782586.

    • Search Google Scholar
    • Export Citation
  • 13.

    Lee H, Park HJ, Cho SN, Bai GH, Kim SJ , 2000. Species identification of mycobacteria by PCR-restriction fragment length polymorphism of the rpoB gene. J Clin Microbiol 38: 29662971.

    • Search Google Scholar
    • Export Citation
  • 14.

    Chimara E, Ferrazoli L, Ueky SY, Martins MC, Durham AM, Arbeit RD, Leao SC , 2008. Reliable identification of mycobacterial species by PCR-restriction enzyme analysis (PRA)-hsp65 in a reference laboratory and elaboration of a sequence-based extended algorithm of PRA-hsp65 patterns. BMC Microbiol 8: 48.

    • Search Google Scholar
    • Export Citation
  • 15.

    Ong CS, Ngeow YF, Yap SF, Tay ST , 2010. Evaluation of PCR-RFLP analysis targeting hsp65 and rpoB genes for the typing of mycobacterial isolates in Malaysia. J Med Microbiol 59: 13111316.

    • Search Google Scholar
    • Export Citation
  • 16.

    Zavala S, Rosas SCA, Sosa N, Henostroza G, Arauz Rodriguez AB , 2018. Characterization of non-tuberculous mycobacteria isolates in a national mycobacterial laboratory in Panama: 2012–2015. Open Forum Infect Dis 5 (Suppl 1 ):S280.

    • Search Google Scholar
    • Export Citation
  • 17.

    Silva RM, Bazzo ML, Chagas M , 2010. Quality of sputum in the performance of polymerase chain reaction for diagnosis of pulmonary tuberculosis. Braz J Infect Dis 14: 116120.

    • Search Google Scholar
    • Export Citation
  • 18.

    Tarajia M, Goodridge A , 2014. Tuberculosis remains a challenge despite economic growth in Panama. Int J Tuberc Lung Dis 18: 286288.

  • 19.

    Acceso Global , 2017. Panama Transition Readiness Assessment Country Report. Available at: https://acesoglobal.org/work/2019-4-3-panama-transition-readiness-assessment-country-report/ . Accessed August 10, 2020.

  • 20.

    Mambuque ET, Abascal E, Venter R, Bulo H, Bouza E, Theron G, Garcia-Basteiro AL, Garcia-de-Viedma D , 2018. Direct genotyping of Mycobacterium tuberculosis from Xpert((R)) MTB/RIF remnants. Tuberculosis (Edinb) 111: 202206.

    • Search Google Scholar
    • Export Citation
  • 21.

    Fontes AN et al.2012. Genotyping of Mycobacterium leprae present on Ziehl-Neelsen-stained microscopic slides and in skin biopsy samples from leprosy patients in different geographic regions of Brazil. Mem Inst Oswaldo Cruz 107 (Suppl 1 ):143149.

    • Search Google Scholar
    • Export Citation
  • 22.

    Griffith DE et al. ATS Mycobacterial Diseases Subcommittee, American Thoracic Society, Infectious Disease Society of America, 2007. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175: 367416.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 
 
 

 

 

 

 

 

 

Direct Molecular Characterization of Acid-Fast Bacilli Smear of Nontuberculosis Mycobacterium Species Causing Pulmonary Tuberculosis in Guna Yala Region, Panama

View More View Less
  • 1 Centro Regional de Salud de la Comarca Guna Yala, Ministerio de Salud (MINSA), Hospital Rural Inabaguinya, Sasardi, Tubuala, Guna Yala, Panamá;
  • | 2 Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) del Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Panamá;
  • | 3 Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India;
  • | 4 Florida State University, Ciudad del Saber, Panamá;
  • | 5 Centro de Salud de Playon Chico, Ailigandi, Guna Yala, Panama;
  • | 6 Centro de Salud de Cartí Sugtupu, Narganá, Guna Yala, Panama;
  • | 7 Centro de Salud de Narganá, Narganá, Guna Yala, Panama

ABSTRACT.

Mycobacterium tuberculosis (MTB) stands out as the main causative agent of pulmonary tuberculosis (TB). However, nontuberculous mycobacteria (NTM) species also have the potential to infect and cause TB in susceptible individuals. The objective of this study was to identify NTM species that cause public health problems in remote areas. The study was carried out using 105 sputum smears obtained from patients from the Guna Yala Region of Panama with clinical signs suggestive of TB. DNA was extracted from sputum smears. Nontuberculous mycobacteria and MTB were characterized using polymerase chain reaction restriction analysis (hsp65, rpob) and an evaluation of 24-mycobacterial interspersed repetitive units–variable number of tandem repeats loci. Twenty-six Mycobacterium species were characterized; 19 (18%) were identified as MTB, and 7 (6.7%) were identified as NTM (four M. avium complex, two M. haemophilum, one M. tusciae). These results suggest that at least one in five cases of pulmonary TB among this population is caused by an NTM. Thus, identifying the bacteria causing pulmonary disease is key even in remote regions of the world where standard diagnosis and culture are not available. Strengthening the laboratory capacity within the Guna Yala Region is needed to identify NTM infections promptly.

Author Notes

Address correspondence to Amador Goodridge, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad del Saber, Panamá. E-mail: agoodridge@indicasat.org.pa †These authors contributed equally to this article.

These authors contributed equally to this article.

Financial support: This research was funded partially by the National Secretariat of Science and Technology of Panama (SENACYT) through the Sistema Nacional de Investigadores de Panamá (SNI), Programa de Inserción de Talento Especializado Grant No. ITE-11-020 and by the Programa de Beca Doctoral IFARHU-SENACYT (grant no. 270-2016-293) to F.A.

Authors’ addresses: Arístides López, Florentino Arias, Baudilio Escobar, Porfirio Ortis, and Fidel Adames, Ministerio de Salud Panama, Centro Regional de Salud de la Comarca Guna Yala, Ailigandí, Guna Yala, Panama, E-mails: alopez@minsa.gob.pa, farias@minsa.gob.pa, bescobar@minsa.gob.pa, portis@minsa.gob.pa, and fadames@minsa.gob.pa. Fermin Acosta, INDICASAT AIP, Centro de Biología Molecular de las Enfermedades, Panama City, Panama, E-mail: fermin2819@gmail.com. Dilcia Sambrano and Amador Goodridge, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología INDICASAT-AIP, Centro de Biología Celular y Molecular de las Enfermedades, City of Knowledge, Panama, E-mails: ludy25305@gmail.com and amadorgj@yahoo.com. Musharaf Tarajia, INDICASAT-AIP, Tuberculosis Biomarker Research Unit at Centro de Biología Molecular y Celular de Enfermedades, Ciudad del Saber, Panama City, Panama, E-mail: drtarajia@me.com. Sophia Navajas, Florida State University, Panama City, Biology, City of Knowledge, Panama, E-mail: sn13@my.fsu.edu.

Save