• 1.

    Centers for Disease Control and Prevention , 2019. Antibiotic Resistance Threats in the United States. Available at: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf. Accessed January 15, 2020.

  • 2.

    de Kraker MEA, Davey PG, Grundmann H, 2011. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med 8: e1001104.

    • Search Google Scholar
    • Export Citation
  • 3.

    Centers for Disease Control and Prevention , 2016. Antibiotic/antimicrobial Resistance: Biggest Threats. Available at: https://www.cdc.gov/drugresistance/biggest-threats.html. Accessed January 15, 2020.

  • 4.

    Janvier F, Mérens A, Delaune D, Soler C, Cavallo J-D, 2011. Fecal carriage of third-generation cephalosporins-resistant Enterobacteriaceae in asymptomatic young adults: evolution between 1999 and 2009. Pathol Biol (Paris) 59: 97101.

    • Search Google Scholar
    • Export Citation
  • 5.

    Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJV, 2016. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387: 176187.

    • Search Google Scholar
    • Export Citation
  • 6.

    Murray TS, Peaper DR, 2015. The contribution of extended-spectrum β-lactamases to multidrug-resistant infections in children. Curr Opin Pediatr 27: 124131.

    • Search Google Scholar
    • Export Citation
  • 7.

    Megged O, 2014. Extended-spectrum β-lactamase-producing bacteria causing community-acquired urinary tract infections in children. Pediatr Nephrol 29: 15831587.

    • Search Google Scholar
    • Export Citation
  • 8.

    Laupland KB, Church DL, Vidakovich J, Mucenski M, Pitout JDD, 2008. Community-onset extended-spectrum β-lactamase (ESBL) producing Escherichia coli: importance of international travel. J Infect 57: 441448.

    • Search Google Scholar
    • Export Citation
  • 9.

    Blyth DM, Mende K, Maranich AM, Beckius ML, Harnisch KA, Rosemann CA, Zera WC, Murray CK, Akers KS, 2016. Antimicrobial resistance acquisition after international travel in U.S. travelers. Trop Dis Travel Med Vaccines 2: 4.

    • Search Google Scholar
    • Export Citation
  • 10.

    Tängdén T, Cars O, Melhus A, Löwdin E, 2010. Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: a prospective study with Swedish volunteers. Antimicrob Agents Chemother 54: 35643568.

    • Search Google Scholar
    • Export Citation
  • 11.

    Vikesland P, Garner E, Gupta S, Kang S, Maile-Moskowitz A, Zhu N, 2019. Differential drivers of antimicrobial resistance across the world. Acc Chem Res 52: 916924.

    • Search Google Scholar
    • Export Citation
  • 12.

    Finley RL et al., 2013. The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis 57: 704710.

  • 13.

    Bonelli RR, Moreira BM, Picão RC, 2014. Antimicrobial resistance among Enterobacteriaceae in South America: history, current dissemination status and associated socioeconomic factors. Drug Resist Updat 17: 2436.

    • Search Google Scholar
    • Export Citation
  • 14.

    Singer RS, Finch R, Wegener HC, Bywater R, Walters J, Lipsitch M, 2003. Antibiotic resistance—the interplay between antibiotic use in animals and human beings. Lancet Infect Dis 3: 4751.

    • Search Google Scholar
    • Export Citation
  • 15.

    Dohmen W, Bonten MJM, Bos MEH, van Marm S, Scharringa J, Wagenaar JA, Heederik DJJ, 2015. Carriage of extended-spectrum β-lactamases in pig farmers is associated with occurrence in pigs. Clin Microbiol Infect 21: 917923.

    • Search Google Scholar
    • Export Citation
  • 16.

    Collignon P, Beggs JJ, Walsh TR, Gandra S, Laxminarayan R, 2018. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet Health 2: e398e405.

    • Search Google Scholar
    • Export Citation
  • 17.

    Kraemer SA, Ramachandran A, Perron GG, 2019. Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 7: 180.

    • Search Google Scholar
    • Export Citation
  • 18.

    Alividza V, Mariano V, Ahmad R, Charani E, Rawson TM, Holmes AH, Castro-Sánchez E, 2018. Investigating the impact of poverty on colonization and infection with drug-resistant organisms in humans: a systematic review. Infect Dis Poverty 7: 76.

    • Search Google Scholar
    • Export Citation
  • 19.

    Nellums LB, Thompson H, Holmes A, Castro-Sánchez E, Otter JA, Norredam M, Friedland JS, Hargreaves S, 2018. Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis. Lancet Infect Dis 18: 796811.

    • Search Google Scholar
    • Export Citation
  • 20.

    Bruinsma N, Hutchinson JM, van den Bogaard AE, Giamarellou H, Degener J, Stobberingh EE, 2003. Influence of population density on antibiotic resistance. J Antimicrob Chemother 51: 385390.

    • Search Google Scholar
    • Export Citation
  • 21.

    World Health Organization, 2020 Antimicrobial Resistance: An Emerging Water, Sanitation and Hygiene Issue. Geneva, Switzerland WHO. Available at: http://www.who.int/water_sanitation_health/publications/antimicrobial-resistance/en/. Accessed February 25, 2020.

  • 22.

    Nadimpalli ML et al., 2020. Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat Microbiol 5: 787795.

    • Search Google Scholar
    • Export Citation
  • 23.

    Ramay BM et al., 2020. Antibiotic use and hygiene interact to influence the distribution of antimicrobial-resistant bacteria in low-income communities in Guatemala. Sci Rep 10: 13767.

    • Search Google Scholar
    • Export Citation
  • 24.

    Ngure FM et al., 2013. Formative research on hygiene behaviors and geophagy among infants and young children and implications of exposure to fecal bacteria. Am J Trop Med Hyg 89: 709716.

    • Search Google Scholar
    • Export Citation
  • 25.

    Salinas L, Cárdenas P, Johnson TJ, Vasco K, Graham J, Trueba G, 2019. Diverse commensal Escherichia coli clones and plasmids disseminate antimicrobial resistance genes in domestic animals and children in a semirural community in Ecuador. MSphere 4 e00316-19.

    • Search Google Scholar
    • Export Citation
  • 26.

    Boonyasiri A, Tangkoskul T, Seenama C, Saiyarin J, Tiengrim S, Thamlikitkul V, 2014. Prevalence of antibiotic resistant bacteria in healthy adults, foods, food animals, and the environment in selected areas in Thailand. Pathog Glob Health 108: 235245.

    • Search Google Scholar
    • Export Citation
  • 27.

    Hammerum AM et al., 2014. Characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third- or fourth-generation cephalosporins. J Antimicrob Chemother 69: 26502657.

    • Search Google Scholar
    • Export Citation
  • 28.

    Lautenbach E, Bilker WB, Tolomeo P, Maslow JN, 2008. Impact of diversity of colonizing strains on strategies for sampling Escherichia coli from fecal specimens. J Clin Microbiol 46: 30943096.

    • Search Google Scholar
    • Export Citation
  • 29.

    Tandé D, Boisramé-Gastrin S, Münck MR, Héry-Arnaud G, Gouriou S, Jallot N, Nordmann P, Naas T, 2010. Intrafamilial transmission of extended-spectrum-β-lactamase-producing Escherichia coli and Salmonella enterica Babelsberg among the families of internationally adopted children. J Antimicrob Chemother 65: 859865.

    • Search Google Scholar
    • Export Citation
  • 30.

    Clinical and Laboratory Standards Institute , M100. Performance Standards for Antimicrobial Susceptibility Testing, 30th edition. Available at: https://clsi.org/standards/products/microbiology/documents/m100/. Accessed February 25, 2020.

  • 31.

    Rupp ME, Fey PD, 2003. Extended spectrum β-lactamase (ESBL)-producing enterobacteriaceae. Drugs 63: 353365.

  • 32.

    European Committee on Antimicrobial Susceptibility Testing , 2017. EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance, Version 2.0. Available at: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf.

  • 33.

    Howe LD et al., 2012. Measuring socio-economic position for epidemiological studies in low- and middle-income countries: a methods of measurement in epidemiology paper. Int J Epidemiol 41: 871886.

    • Search Google Scholar
    • Export Citation
  • 34.

    Filmer D, Pritchett LH, 2001. Estimating wealth effects without expenditure data-or tears: an application to educational enrollments in states of India. Demography 38: 115132.

    • Search Google Scholar
    • Export Citation
  • 35.

    Nadimpalli ML et al., 2018. Face mask use and persistence of livestock-associated Staphylococcus aureus nasal carriage among industrial hog operation workers and household contacts, USA. Environ Health Perspect 126: 127005.

    • Search Google Scholar
    • Export Citation
  • 36.

    Prendergast AJ et al., 2019. Putting the “A” into WaSH: a call for integrated management of water, animals, sanitation, and hygiene. Lancet Planet Health 3: e336e337.

    • Search Google Scholar
    • Export Citation
  • 37.

    Lowenstein C, Waters WF, Roess A, Leibler JH, Graham JP, 2016. Animal husbandry practices and perceptions of zoonotic infectious disease risks among livestock keepers in a rural parish of Quito, Ecuador. Am J Trop Med Hyg 95: 14501458.

    • Search Google Scholar
    • Export Citation
  • 38.

    Schinasi L et al., 2014. A case control study of environmental and occupational exposures associated with methicillin resistant Staphylococcus aureus nasal carriage in patients admitted to a rural tertiary care hospital in a high density swine region. Environ Health 13: 54.

    • Search Google Scholar
    • Export Citation
  • 39.

    Lindeberg YL, Egedal K, Hossain ZZ, Phelps M, Tulsiani S, Farhana I, Begum A, Jensen PKM, 2018. Can Escherichia coli fly? The role of flies as transmitters of E. coli to food in an urban slum in Bangladesh. Trop Med Int Health 23: 29.

    • Search Google Scholar
    • Export Citation
  • 40.

    Braykov NP et al., 2016. Antibiotic resistance in animal and environmental samples associated with small-scale poultry farming in northwestern Ecuador. MSphere 1: e00021000215.

    • Search Google Scholar
    • Export Citation
  • 41.

    Butzin-Dozier Z, Waters WF, Baca M, Vinueza RL, Saraiva-Garcia C, Graham J, 2020. Assessing upstream determinants of antibiotic use in small-scale food animal production through a simulated client method. Antibiotics (Basel) 10: 2.

    • Search Google Scholar
    • Export Citation
  • 42.

    Liseth S, Fernanda L, Paúl C, Carlos S, Johnson TJ, Heather A, Graham JP, Gabriel T, 2021. Environmental spread of extended spectrum beta-lactamase (ESBL) producing Escherichia coli and ESBL genes among children and domestic animals in Ecuador. Environ Health Perspect 129: 027007.

    • Search Google Scholar
    • Export Citation
  • 43.

    Ortega-Paredes D, Haro M, Leoro-Garzón P, Barba P, Loaiza K, Mora F, Fors M, Vinueza-Burgos C, Fernández-Moreira E, 2019. Multidrug-resistant Escherichia coli isolated from canine faeces in a public park in Quito, Ecuador. J Glob Antimicrob Resist 18: 263268.

    • Search Google Scholar
    • Export Citation
  • 44.

    Albrechtova K, Dolejska M, Cizek A, Tausova D, Klimes J, Bebora L, Literak I, 2012. Dogs of nomadic pastoralists in northern Kenya are reservoirs of plasmid-mediated cephalosporin- and quinolone-resistant Escherichia coli, including pandemic clone B2-O25-ST131. Antimicrob Agents Chemother 56: 40134017.

    • Search Google Scholar
    • Export Citation
  • 45.

    Hordijk J, Schoormans A, Kwakernaak M, Duim B, Broens E, Dierikx C, Mevius D, Wagenaar JA, 2013. High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front Microbiol 4: 242.

    • Search Google Scholar
    • Export Citation
  • 46.

    Loayza F, Graham JP, Trueba G, 2020. Factors obscuring the role of E. coli from domestic animals in the global antimicrobial resistance crisis: an evidence-based review. Int J Environ Res Public Health 17: 3061.

    • Search Google Scholar
    • Export Citation
  • 47.

    Seidman JC, P Anitha K, Kanungo R, Bourgeois AL, Coles CL, 2009. Risk factors for antibiotic-resistant E. coli in children in a rural area. Epidemiol Infect 137: 879888.

    • Search Google Scholar
    • Export Citation
  • 48.

    Lo W-U, Ho P-L, Chow K-H, Lai EL, Yeung F, Chiu SS, 2010. Fecal carriage of CTXM type extended-spectrum beta-lactamase-producing organisms by children and their household contacts. J Infect 60: 286292.

    • Search Google Scholar
    • Export Citation
  • 49.

    Kristiansson C, Grape M, Gotuzzo E, Samalvides F, Chauca J, Larsson M, Bartoloni A, Pallecchi L, Kronvall G, Petzold M, 2009. Socioeconomic factors and antibiotic use in relation to antimicrobial resistance in the Amazonian area of Peru. Scand J Infect Dis 41: 303312.

    • Search Google Scholar
    • Export Citation
  • 50.

    Mangrio E, Wremp A, Moghaddassi M, Merlo J, Bramhagen A-C, Rosvall M, 2009. Antibiotic use among 8-month-old children in Malmö, Sweden–in relation to child characteristics and parental sociodemographic, psychosocial and lifestyle factors. BMC Pediatr 9: 31.

    • Search Google Scholar
    • Export Citation
  • 51.

    Alsan M, Kammili N, Lakshmi J, Xing A, Khan A, Rani M, Kolli P, Relman DA, Owens DK, 2018. Poverty and community-acquired antimicrobial resistance with extended-spectrum β-lactamase–producing organisms, Hyderabad, India. Emerg Infect Dis 24: 14901496.

    • Search Google Scholar
    • Export Citation
  • 52.

    Kalter HD, Gilman RH, Moulton LH, Cullotta AR, Cabrera L, Velapatiño B, 2010. Risk factors for antibiotic-resistant Escherichia coli carriage in young children in Peru: community-based cross-sectional prevalence study. Am J Trop Med Hyg 82: 879888.

    • Search Google Scholar
    • Export Citation
  • 53.

    van den Bunt G, Liakopoulos A, Mevius DJ, Geurts Y, Fluit AC, Bonten MJM, Mughini-Gras L, van Pelt W, 2017. ESBL/AmpC-producing Enterobacteriaceae in households with children of preschool age: prevalence, risk factors and co-carriage. J Antimicrob Chemother 72: 589595.

    • Search Google Scholar
    • Export Citation
  • 54.

    Kaarme J, Molin Y, Olsen B, Melhus Å, 2013. Prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae in healthy Swedish preschool children. Acta Paediatr 102: 655660.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 
 
 

 

 

 

 

 

 

Social and Environmental Determinants of Community-Acquired Antimicrobial-Resistant Escherichia coli in Children Living in Semirural Communities of Quito, Ecuador

View More View Less
  • 1 University of California, Berkeley School of Public Health, Berkeley, California;
  • | 2 Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador

ABSTRACT.

Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL), a family of bacteria that includes Escherichia coli, have emerged as a global health threat. This study examined risks associated with carriage of third-generation cephalosporin-resistant (3GC-R) E. coli, including ESBL-producing, multidrug-resistant, and extensively drug-resistant (XDR) strains in children living in semirural parishes of Quito, Ecuador. We conducted a longitudinal study with two cycles of sampling (N = 374, N = 366) that included an analysis of child fecal samples and survey questions relating to water, sanitation, and hygiene, socioeconomic status, household crowding, and animal ownership. We used multivariate regression models to assess risk factors associated with a child being colonized. Across the two cycles, 18.4% (n = 516) of the 3GC-R isolates were ESBL-producing E. coli, and 40.3% (n = 516) were XDR E. coli. Children living in households that owned between 11 and 20 backyard animals had an increased odds of being colonized with XDR E. coli (odds ratio [OR] = 1.94, 95% confidence interval [CI]: 1.05–3.60) compared with those with no animals. Households that reported smelling odors from commercial poultry had increased odds of having a child positive for XDR E. coli (OR = 1.72, 95% CI: 1.11–2.66). Our results suggest that colonization of children with antimicrobial-resistant E. coli is influenced by exposure to backyard and commercial livestock and poultry. Future studies should consider community-level risk factors because child exposures to drug-resistant bacteria are likely influenced by neighborhood and regional risk factors.

    • Supplemental Materials (PDF 640 KB)

Author Notes

Address correspondence to Jay P. Graham, Division of Environmental Health Sciences, University of California, Berkeley School of Public Health, 2121 Berkeley Way, Room 5302 Berkeley, CA 94720-7360. E-mail: jay.graham@berkeley.edu

Financial support: Research reported in this publication was supported by the National Institutes of Health under award no. R01AI135118.

Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Authors’ addresses: Kathleen M. Kurowski and Rachel Marusinec, Division of Infectious Diseases and Vaccinology, University of California, Berkeley School of Public Health, Berkeley, CA, E-mails: kathleen_kurowski@berkeley.edu and rachel_marusinec@berkeley.edu. Heather K. Amato and Jay P. Graham, Division of Environmental Health Sciences, University of California, Berkeley School of Public Health, Berkeley, CA, E-mail: heather_amato@berkeley.edu and jay.graham@berkeley.edu. Carlos Saraiva-Garcia, Fernanda Loayza, Liseth Salinas, and Gabriel Trueba, Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador, E-mails: hsaraiva@usfq.edu.ec, mfloayzav@usfq.edu.ec, lsalinas2@estud.usfq.edu.ec, and gtrueba@usfq.edu.ec.

Save