Triatomines (Hemiptera, Triatominae) are hematophagous insects of great epidemiological importance because they are vectors of the protozoan Trypanosoma cruzi (Chagas, 1909) (Kinetoplastida, Trypanosomatidae), the etiological agent of Chagas disease—a neglected disease that affects about eight million people, resulting in approximately 10,000 deaths per year from clinical manifestations (such as terminal heart failure, thromboembolic complications, refractory ventricular arrhythmias, and sudden death). 1,2 Although all of triatomine species, of both sexes, are considered as potential vectors of Chagas disease, the Triatoma (Laporte, 1832), Panstrongylus (Berg, 1879), and Rhodnius (Stål, 1859) genera are the most important from the epidemiological point of view. 3
The genus Rhodnius is a paraphyletic group composed of 23 species grouped into three large groups (pallescens, pictipes, and prolixus) (Table 1). The genus paraphilia is related to the fact that the species of the prolixus group present greater phylogenetic proximity with the Psammolestes (Bergroth, 1911 genus) than with other groups of Rhodnius spp. 4,5 In an attempt to solve this issue, Hypsa et al. 6 suggested changing the generic status from Psammolestes to Rhodnius. However, because of morphological and habitat divergences, the genus Psammolestes was maintained by the scientific community. 7
Cytogenetic characteristics of Rhodnius spp.
C-banding | CMA3/DAPI | |||||||
---|---|---|---|---|---|---|---|---|
Rhodnius genus | Karyotype | A | X | Y | A | X | Y | |
prolixus group | ||||||||
Rhodnius barretti | – | – | – | – | – | – | – | |
Rhodnius dalessandroi | – | – | – | – | – | – | – | |
Rhodnius domesticus | 2n = 22 (20A + XY)* | Yes† | No† | Yes† | CMA3 + | CMA3 + | DAPI+ | |
Rhodnius milesi | 2n = 22 (20A + XY)‡ | No | No | Yes | – | CMA3 + | DAPI+ | |
Rhodnius marabaensis | 2n = 22 (20A + XY) | No | No | Yes | – | CMA3 + | DAPI+ | |
Rhodnius montenegrensis | 2n = 22 (20A + XY)† | No | No | Yes | – | CMA3 + | DAPI+ | |
Rhodnius nasutus | 2n = 22 (20A + XY)§ | Yes‖ | No‖ | Yes‖ | CMA3 + | CMA3 + | DAPI+ | |
Rhodnius neglectus | 2n = 22 (20A + XY)¶ | No¶ | No¶ | Yes¶ | – | CMA3 + | DAPI+ | |
Rhodnius neivai | 2n = 22 (20A + XY)# | No | No | Yes | – | CMA3 + | DAPI+ | |
Rhodnius prolixus | 2n = 22 (20A + XY)** | No‖ | No‖ | Yes‖ | – | CMA3 + | DAPI+ | |
Rhodnius robustus | 2n = 22 (20A + XY)†† | No‖ | No‖ | Yes‖ | – | CMA3 + | DAPI+ | |
pictipes group | ||||||||
Rhodnius amazonicus | – | – | – | – | – | – | – | |
Rhodnius brethesi | 2n = 22 (20A + XY)‖ | No‖ | No‖ | Yes‖ | – | CMA3 + | DAPI+ | |
Rhodnius paraensis | – | – | – | – | – | – | – | |
Rhodnius pictipes | 2n = 22 (20A + XY)†† | Yes§ | No§ | Yes§ | CMA3 + | CMA3 + | DAPI+ | |
Rhodnius stali | 2n = 22 (20A + XY)* | No | No | Yes | – | CMA3 + | DAPI+ | |
Rhodnius zeledoni | – | – | – | – | – | – | – | |
pallescens group | ||||||||
Rhodnius colombiensis | 2n = 22 (20A + XY)* | Yes‡‡ | No‡‡ | Yes‡‡ | CMA3 + | CMA3 + | DAPI+ | |
Rhodnius ecuadoriensis | 2n = 22 (20A + XY)‖ | No‖ | No‖ | Yes‖ | – | CMA3 + | DAPI+ | |
Rhodnius pallescens | 2n = 22 (20A + XY)§§ | Yes‖ | No‖ | Yes‖ | CMA3 + | CMA3 + | DAPI+ |
The species of the genus Rhodnius show little interspecific chromosomal variation because all species analyzed so far have karyotype 2n = 22 (20A + XY) (Table 1) and 45S rDNA clusters restricted to sex chromosomes. 8 Besides, most species have heterochromatin restricted to the Y sex chromosome (Table 1). However, the knowledge of the genomic composition of heterochromatin base pairs (AT and CG) is limited to Rhodnius pallescens (Barber, 1932), 9 and Rhodnius prolixus (Stål, 1859), 10 highlighting the necessity for further studies on the molecular cytogenetics of these vectors. Based on the data presented earlier, we analyzed the distribution of AT- and CG-rich DNA in the chromatin and chromosomes of the genus Rhodnius, and discuss the chromosome evolution of these vectors.
At least five adult males from each species (10 R. prolixus, 10 Rhodnius robustus (Larrousse, 1927), 10 Rhodnius neglectus (Lent, 1954), five Rhodnius nasutus (Stål, 1859), five Rhodnius domesticus (Neiva and Pinto, 1923), 10 Rhodnius montenegrensis (Rosa et al. [2012]), and five Rhodnius marabaensis (Souza et al. [2016])) were used. They had been assigned by the Triatominae Insectarium within the Department of Biological Sciences, in the College of Pharmaceutical Sciences, at Sao Paulo State University’s Araraquara campus (FCFAR/UNESP), São Paulo, Brazil. The seminiferous tubules of the specimens were squashed and fixed to a coverslip. Then, they underwent the cytogenetic technique of CMA3/4′,6-diamidino-2-phenylindole (DAPI) 9 and C banding. 11 The biological material was analyzed using a Jenaval light microscope (Zeiss) attached to a digital camera, with the AxioVision LE 4.8 image analyzer (Copyright 2006–2009 Carl Zeiss Imaging Solutions GmbH), and using a fluorescence microscope Zeiss-Axioskop and Olympus BX-FLA.
All species had the same number of chromosomes, 2n = 22 (20A + XY) (Table 1), confirming the hypothesis that all species of the Rhodniini tribe have 22 chromosomes. 23 Taking into account that the ancestral karyotype is 2n = 22, 23,24 Alevi et al. 23 highlight that during the diversification of the pallescens, pictipes, and prolixus groups, there were no evolutionary events (as agmatoploidy and simploidy) that resulted in changes in the number of chromosomes.
Except for R. domesticus, R. nasutus, Rhodnius pictipes (Stål, 1872), Rhodnius colombiensis (Mejia, Galvão and Jurberg, 1999), and R. pallescens, all Rhodnius species have euchromatic autosomes with the absence of AT- and CG-rich blocks (Figure 1A and B) (Table 1). Curiously, the same species that have heterochromatin blocks in the autosomes also have CMA3 + blocks dispersed in the prophasic nucleus (Figure 1D) (Table 1), emphasizing that the heterochromatin present in the chromosomes of R. domesticus, R. nasutus, R. pictipes, R. colombiensis, and R. pallescens is rich in CG regions. Besides, all species had the euchromatic X sex chromosome and CMA3 + (Figure 1B and D), and the heterochromatic Y chromosome and DAPI+ (Figure 1A and C) (Table 1).
Composition of the heterochromatin base pairs in prophases of Rhodnius marabaensis (A and B) and Rhodnius domesticus (C and D). (A and C) Y sex chromosome rich in AT. (B) X sex chromosome rich in CG. (D) X sex chromosome and autosomes rich in GC. Bar: 10 μm.
Citation: The American Journal of Tropical Medicine and Hygiene 104, 2; 10.4269/ajtmh.20-0875
Taking into account that Rhodnius species whose autosomes present heterochromatic blocks and CMA3 + belong to different groups (prolixus group: R. domesticus and R. nasutus; pictipes group: R. pictipes; and pallescens group: R. colombiensis and R. pallescens), we suggest that the gain/loss of CG-rich heterochromatin was an event that took place independently in the three groups of Rhodnius and can be related to different evolutionary factors. Alevi et al., 25 for example, suggest that the different patterns of heterochromatin losses observed in the pallescens group can be associated with adaptation to different environments occupied by species.
The divergences in the composition of the autosomes can also be used as taxonomic tools to differentiate some species of Rhodnius because events of phenotypic plasticity and cryptic speciation have been reported for this genus of medical importance. 26 Within the prolixus group, for example, R. domesticus and R. nasutus can be distinguished from all other species with euchromatic autosomes; within the pictipes group, R. pictipes can be distinguished from all other species by cytotaxonomy; besides, R. colombiensis and R. pallescens can be differentiated from R. ecuadoriensis (Lent and León, 1958) (euchromatic autosomes). Still, R. colombiensis and R. pallescens can also be differentiated from each other by the amount of heterochromatin in the autosomes. 25
Recently, the heterochromatin pattern and the composition of AT and CG was one of the tools used to describe R. taquarussuensis Rosa et al. 27 However, molecular analyzes and experimental crosses showed that R. taquarussuensis was R. neglectus with chromosomal polymorphisms. 28 Based on this, it is evident that although cytogenetic analyses are of great taxonomic importance, 29,30 the confirmation that different cytotypes represent valid taxa must be performed through integrative taxonomy. 31
Thus, we characterize the AT- and CG-rich DNA pattern for the genus Rhodnius, and we suggest that the pattern of CG-rich heterochromatin in the autosomes of these vectors evolved independently in pallescens, pictipes, and prolixus groups.
REFERENCES
- 1.↑
World Health Organization , 2020. Chagas disease (American trypanosomiasis). Geneva, Switzerland: WHO. Available at: http://www.who.int/chagas/en/. Accessed July 17, 2020.
- 2.↑
Dias JCP et al. 2016. II consenso Brasileiro em Doença de Chagas, 2015. Epidemiol Serv Saúde 25: 7–86.
- 3.↑
Galvão C , 2014. Vetores da doença de Chagas no Brasil. Curitiba, Brazil: Sociedade Brasileira de Zoologia.
- 4.↑
Justi SA , Russo CA , dos Santos Mallet JR , Obara MT , Galvão C , 2014. Molecular phylogeny of triatomini (Hemiptera: Reduviidae: Triatominae). Parasit Vectors 7: 149.
- 5.↑
Justi SA , Galvao C , Schrago CG , 2016. Geological changes of the Americas and their influence on the diversification of the Neotropical kissing bugs (Hemiptera: Reduviidae: Triatominae). PLoS Negl Trop Dis 10: e0004527.
- 6.↑
Hypša V , Tietz DF , Zrzavý J , Rego ROM , Galvão C , Jurberg J , 2002. Phylogeny and biogeography of Triatominae (Hemiptera: Reduvidae) molecular evidence of a new world origin of the Asiatic clade. Mol Phyl Evol 23: 447–457.
- 7.↑
Galvão C , Carcavallo RU , Rocha DS , Jurberg J , 2003. A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa 202: 1–36.
- 8.↑
Pita S , Panzera F , Ferrandis I , Galvão C , Gómez-Palacio A , Panzera Y , 2013. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes. Mem Inst Oswaldo Cruz 108: 376–382.
- 9.↑
Morielle-Souza A , Azeredo-Oliveira MTV , 2007. Differential characterization of holocentric chromosomes in triatomines (Heteroptera, Triatominae) using different staining techniques and fluorescent in situ hybridization. Gen Mol Res 6: 713–720.
- 10.↑
Bardella VB , Pita S , Vanzela ALL , Galvão C , Panzera F , 2016. Heterochromatin base pair composition and diversification in holocentric chromosomes of kissing bugs. (Hemiptera, Reduviidae). Mem Inst Oswaldo Cruz 111: 614–662.
- 11.↑
Sumner AT , 1972. A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 305–306.
- 12.↑
Dujardin JP , Schofield CJ , Panzera F , 2002. Los vectores de la Enfermedad de Chagas. Bruxelle, Belgium: Académie Royale des Sciences d’Outre-Mer.
- 13.↑
Alevi KCC , Ravazi A , Mendonça VJ , Rosa JA , Azeredo-Oliveira MTV , 2015. Karyotype of Rhodnius montenegrensis (Hemiptera, Triatominae). Gen Mol Res 14: 222–226.
- 14.↑
Panzera F , Pérez R , Panzera Y , Ferrandis I , Ferreiro MJ , Calleros L , 2010. Cytogenetics and genome evolution in the subfamily Triatominae (Hemiptera, Reduviidae). Cytogenet Genome Res 128: 77–87.
- 15.↑
Pérez R , Panzera Y , Scafiezzo S , Mazzella MC , Panzera F , Dujardin JP , Scvortzoff E , 1992. Cytogenetic as a tool for Triatominae species distinction (Hemiptera, Reduviidae). Mem Inst Oswaldo Cruz 87: 353–361.
- 16.↑
Panzera F et al. 1998. Cytogenetics of triatomines. Carcavallo RU , ed. Atlas of Chagas Disease Vectors in the Americas. Rio de Janeiro, Brazil: Fiocruz, 621–664.
- 17.↑
Barth R , 1956. Estudos anatômicos e histológicos sôbre a subfamília Triatominae (Hemiptera, Reduviidae). VI. Estudo comparativo sôbre a espermiocitogênese das espécies mais importantes. Mem Inst Oswaldo Cruz 54: 599–623.
- 18.↑
Koshy TK , 1979. Chromosomes of Triatominae I: haploid karyotypes of three species in the genus Rhodnius (Hemiptera: Reduviidae). Acta Cient Venezolana 30: 183–190.
- 19.↑
Schreiber G , Pellegrino J , 1950. Eteropicnosi di autosomi come possibile mecanismo di speciazione; ricerche citologiche su alcuni Emitteri neotropici. Sci Genet 3: 215–226.
- 20.↑
Koshy TK , 1979. Chromosomes of triatominae II: karyotypes studies of five species in the genus Rhodnius (Hemiptera: Reduviidae). Acta Cient Venezolana 30: 191–195.
- 21.↑
Panzera Y , Pita S , Ferreiro MJ , Ferrandis I , Lages C , Pérez R , Silva AE , Guerra M , Panzera F , 2012. High dynamics of rDNA cluster location in kissing bug holocentric chromosomes (Triatominae, Heteroptera). Cytogenet Genome Res 138: 56–67.
- 22.↑
Panzera F , Pérez R , Hornos S , Panzera Y , Cestau R , Delgado V , Nicolini P , 1996. Chromosome numbers in the Triatominae (Hemiptera-Reduviidade): a review. Mem Inst Oswaldo Cruz 91: 515–518.
- 23.↑
Alevi KCC , Oliveira J , Rosa JA , Azeredo-Oliveira MTV , 2018. Karyotype evolution of Chagas disease vectors (Hemiptera, Triatominae). Am J Trop Med Hyg 99: 87–89.
- 24.↑
Ueshima N , 1966. Cytotaxonomy of the triatominae (Reduviidae: Hemiptera). Chromosoma 18: 97–122.
- 25.↑
Alevi KCC , Ravazi A , Franco-Bernardes MF , Rosa JA , Azeredo-Oliveira MTV , 2015. Chromosomal evolution in the pallescens group (Hemiptera, Triatominae). Gen Mol Res 14: 12654–12659.
- 26.↑
Abad-Franch F , Pavan MG , Jaramillo N , Palomeque FS , Dale C , Chaverra D , Monteiro FA , 2013. Rhodnius barretti, a new species of Triatominae (Hemiptera: Reduviidae) from western Amazonia. Mem Inst Oswaldo Cruz 108: 92–99.
- 27.↑
Rosa JA , Justino HHG , Nascimento JD , Mendonça VJ , Rocha CS , Carvalho DB , Falcone R , Azeredo-Oliveira MTV , Alevi KCC , Oliveira J , 2017. A new species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae). Zookeys 675: 01–25.
- 28.↑
Nascimento JD et al. 2019. Taxonomical over splitting in the Rhodnius prolixus (Insecta: Hemiptera: Reduviidae) clade: are R. taquarussuensis (da Rosa et al., 2017) and R. neglectus (Lent, 1954) the same species? PLoS One 14: 0211285.
- 29.↑
Alevi KCC , Imperador CHL , Moreira FFF , Jurberg J , Azeredo-Oliveira MTV , 2016. Differentiation between Triatoma arthurneivai and Triatoma wygodzinskyi (Hemiptera: Reduviidae: Triatominae) using cytotaxonomy. Gen Mol Res 15: gmr.15027869.
- 30.↑
Alevi KCC , Borsatto KC , Moreira FFF , Jurberg J , Azeredo-Oliveira MTV , 2015. Karyosystematics of Triatoma rubrofasciata (De Geer, 1773) (Hemiptera: Reduviidae: Triatominae). Zootaxa 3994: 433–438.
- 31.↑
Ravazi A , Oliveira J , Alevi KCC , 2020. Taxonomia e sistemática da tribo Rhodniini (Hemiptera, Triatominae): uma mini-revisão. Oliveira J , Alevi KCC , Camargo LMA , Meneguetti DUO , eds. Atualidades em Medicina Tropical no Brasil: Vetores. Rio Branco, Brazil: Stricto Sensu Editora, 38–48.