• 1.

    World Health Assembly, 2004. Dracunculiasis eradication. Wkly Epidemiol Rec 79: 234235.

  • 2.

    Ruiz-Tiben E, Hopkins DR, 2006. Dracunculiasis (Guinea worm disease) eradication. Adv Parasitol 61: 275309.

  • 3.

    Hopkins DR, Ruiz-Tiben E, Eberhard ML, Roy SL, Weiss AJ, 2016. Progress toward global eradication of dracunculiasis-January 2015–June 2016. MMWR Morb Mortal Wkly Rep 65: 11121116.

    • Search Google Scholar
    • Export Citation
  • 4.

    Hopkins DR, Ruiz-Tiben E, Eberhard ML, Roy SL, Weiss AJ, 2017. Progress toward global eradication of dracunculiasis, January 2016–June 2017. MMWR Morb Mortal Wkly Rep 66: 13271331.

    • Search Google Scholar
    • Export Citation
  • 5.

    Hopkins DR, Ruiz-Tiben E, Weiss AJ, Roy SL, Zingeser J, Guagliardo SAJ, 2018. Progress toward global eradication of dracunculiasis–January 2017–June 2018. MMWR Morb Mortal Wkly Rep 67: 12651270.

    • Search Google Scholar
    • Export Citation
  • 6.

    Hopkins DR, Weiss AJ, Roy SL, Zingeser J, Guagliardo SAJ, 2019. Progress toward global eradication of dracunculiasis–January 2018–June 2019. MMWR Morb Mortal Wkly Rep 68: 979984.

    • Search Google Scholar
    • Export Citation
  • 7.

    WHO Collaborating Center for Dracunculiasis Eradication, CDC, 2020. Guinea Worm Wrap-Up #266. Available at: https://www.cartercenter.org/resources/pdfs/news/health_publications/guinea_worm/wrap-up/266.pdf. Accessed April 24, 2020.

    • Search Google Scholar
    • Export Citation
  • 8.

    WHO Collaborating Center for Dracunculiasis Eradication, CDC, 2014. Guinea Worm Wrap-Up #228. Available at: https://www.cartercenter.org/resources/pdfs/news/health_publications/guinea_worm/wrap-up/228.pdf. Accessed April 24, 2020.

    • Search Google Scholar
    • Export Citation
  • 9.

    World Health Organization, 2017. Dracunculiasis eradication: global surveillance summary, 2016. Wkly Epidemiol Rec 92: 269286.

  • 10.

    Bimi L, Freeman AR, Eberhard ML, Ruiz-Tiben E, Pieniazek NJ, 2005. Differentiating Dracunculus medinensis from D. insignis, by the sequence analysis of the 18S rRNA gene. Ann Trop Med Parasitol 99: 511517.

    • Search Google Scholar
    • Export Citation
  • 11.

    Eberhard ML 2014. The peculiar epidemiology of dracunculiasis in Chad. Am J Trop Med Hyg 90: 6170.

  • 12.

    WHO Collaborating Center for Dracunculiasis Eradication, CDC, 2019. Guinea Worm Wrap-Up #261. Available at: https://www.cartercenter.org/resources/pdfs/news/health_publications/guinea_worm/wrap-up/261.pdf. Accessed September 26, 2019.

    • Search Google Scholar
    • Export Citation
  • 13.

    Thiele EA, Eberhard ML, Cotton JA, Durrant C, Berg J, Hamm K, Ruiz-Tiben E, 2018. Population genetic analysis of Chadian Guinea worms reveals that human and non-human hosts share common parasite populations. PLoS Negl Trop Dis 12: e0006747.

    • Search Google Scholar
    • Export Citation
  • 14.

    Durrant C 2019. Population genomic evidence that human and animal infections in Africa come from the same populations of Dracunculus medinensis. BioRxiv. Availble at: https://doi.org/10.1101/808923.

  • 15.

    Cleveland CA, Eberhard ML, Thompson AT, Garrett KB, Swanepoel L, Zirimwabagabo H, Moundai T, Ouakou PT, Ruiz-Tiben E, Yabsley MJ, 2019. A search for tiny dragons (Dracunculus medinensis third-stage larvae) in aquatic animals in Chad, Africa. Sci Rep 9: 375.

    • Search Google Scholar
    • Export Citation
  • 16.

    Cleveland CA, Eberhard ML, Thompson AT, Smith SJ, Zirimwabagabo H, Bringolf R, Yabsley MJ, 2017. Possible role of fish as transport hosts for Dracunculus spp. larvae. Emerg Infect Dis 23: 15901592.

    • Search Google Scholar
    • Export Citation
  • 17.

    Eberhard ML, Yabsley MJ, Zirimwabagabo H, Bishop H, Cleveland CA, Maerz JC, Bringolf R, Ruiz-Tiben E, 2016. Possible role of fish and frogs as paratenic hosts of Dracunculus medinensis, Chad. Emerg Infect Dis 22: 14281430.

    • Search Google Scholar
    • Export Citation
  • 18.

    WHO Collaborating Center for Research TaEoD, CDC, 2014. Guinea Worm Wrap-Up #230. Available at: https://www.cartercenter.org/resources/pdfs/news/health_publications/guinea_worm/wrap-up/230.pdf. Accessed September 26, 2019.

    • Search Google Scholar
    • Export Citation
  • 19.

    Fagbemi BO, Hillyer GV, 1990. Immunodiagnosis of dracunculiasis by Falcon assay screening test-enzyme-linked immunosorbent assay (FAST-ELISA) and by enzyme-linked immunoelectrotransfer blot (EITB) technique. Am J Trop Med Hyg 43: 665668.

    • Search Google Scholar
    • Export Citation
  • 20.

    Bloch P, Simonsen PE, 1998. Studies on immunodiagnosis of dracunculiasis. I. Detection of specific serum antibodies. Acta Trop 70: 7386.

  • 21.

    Bloch P, Simonsen PE, 1998. Immunoepidemiology of Dracunculus medinensis infections I. Antibody responses in relation to infection status. Am J Trop Med Hyg 59: 978984.

    • Search Google Scholar
    • Export Citation
  • 22.

    Bloch P, Simonsen PE, 1998. Immunoepidemiology of Dracunculus medinensis infections II. Variation in antibody responses in relation to transmission season and patency. Am J Trop Med Hyg 59: 985990.

    • Search Google Scholar
    • Export Citation
  • 23.

    Bloch P, Simonsen PE, Vennervald BJ, 1993. The antibody response to Dracunculus medinensis in an endemic human population of northern Ghana. J Helminthol 67: 3748.

    • Search Google Scholar
    • Export Citation
  • 24.

    Knopp S, Amegbo IK, Hamm DM, Schulz-Key H, Banla M, Soboslay PT, 2008. Antibody and cytokine responses in Dracunculus medinensis patients at distinct states of infection. Trans R Soc Trop Med Hyg 102: 277283.

    • Search Google Scholar
    • Export Citation
  • 25.

    Laemmli UK, 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680685.

  • 26.

    Ko YG, Thompson GA Jr., 1995. Purification of glycosylphosphatidylinositol-anchored proteins by modified triton X-114 partitioning and preparative gel electrophoresis. Anal Biochem 224: 166172.

    • Search Google Scholar
    • Export Citation
  • 27.

    Priest JW, Kwon JP, Moss DM, Roberts JM, Arrowood MJ, Dworkin MS, Juranek DD, Lammie PJ, 1999. Detection by enzyme immunoassay of serum immunoglobulin G antibodies that recognize specific Cryptosporidium parvum antigens. J Clin Microbiol 37: 13851392.

    • Search Google Scholar
    • Export Citation
  • 28.

    Priest JW, Mehlert A, Arrowood MJ, Riggs MW, Ferguson MA, 2003. Characterization of a low molecular weight glycolipid antigen from Cryptosporidium parvum. J Biol Chem 278: 5221252222.

    • Search Google Scholar
    • Export Citation
  • 29.

    Howe KL 2016. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res 44: D774D780.

  • 30.

    Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M, 2017. WormBase ParaSite–a comprehensive resource for helminth genomics. Mol Biochem Parasitol 215: 210.

    • Search Google Scholar
    • Export Citation
  • 31.

    Moss DM, Montgomery JM, Newland SV, Priest JW, Lammie PJ, 2004. Detection of cryptosporidium antibodies in sera and oral fluids using multiplex bead assay. J Parasitol 90: 397404.

    • Search Google Scholar
    • Export Citation
  • 32.

    Priest JW, Moss DM, 2020. Measuring cryptosporidium serologic responses by multiplex bead assay. Methods Mol Biol 2052: 6185.

  • 33.

    Waterboer T, Sehr P, Pawlita M, 2006. Suppression of non-specific binding in serological Luminex assays. J Immunol Methods 309: 200204.

  • 34.

    Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H, 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37: 420423.

    • Search Google Scholar
    • Export Citation
  • 35.

    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402.

    • Search Google Scholar
    • Export Citation
  • 36.

    Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schaffer AA, Yu YK, 2005. Protein database searches using compositionally adjusted substitution matrices. FEBS J 272: 51015109.

    • Search Google Scholar
    • Export Citation
  • 37.

    Zweig MH, Campbell G, 1993. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39: 561577.

    • Search Google Scholar
    • Export Citation
  • 38.

    Youden WJ, 1950. Index for rating diagnostic tests. Cancer 3: 3235.

  • 39.

    Kumar R, Indrayan A, 2011. Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr 48: 277287.

  • 40.

    Zhu XQ 2015. Genetic blueprint of the zoonotic pathogen Toxocara canis. Nat Commun 6: 6145.

  • 41.

    Muller R, 1970. Dracunculus medinensis: diagnosis by indirect fluorescent antibody technique. Exp Parasitol 27: 357361.

  • 42.

    Prakash D, Parab PB, Sharma RN, 1993. Immunodiagnosis of dracunculiasis by dot-ELISA. Ann Trop Med Parasitol 87: 195199.

  • 43.

    Garate T, Kliks MM, Cabrera Z, Parkhouse RM, 1990. Specific and cross-reacting antibodies in human responses to Onchocerca volvulus and Dracunculus medinensis infections. Am J Trop Med Hyg 42: 140147.

    • Search Google Scholar
    • Export Citation
  • 44.

    Dissanayake S, Xu M, Piessens WF, 1992. A cloned antigen for serological diagnosis of Wucheraria bancrofti microfilaremia with daytime blood samples. Mol Biochem Parasitol 56: 269278.

    • Search Google Scholar
    • Export Citation
  • 45.

    Chandrashekar R, Curtis KC, Ramzy RM, Liftis F, Li BW, Weil GJ, 1994. Molecular cloning of Brugia malayi antigens for diagnosis of lymphatic filariasis. Mol Biochem Parasitol 64: 261271.

    • Search Google Scholar
    • Export Citation
  • 46.

    Bradley JE, Tuan RS, Shepley KJ, Tree TI, Maizels RM, Helm R, Gregory WF, Unnasch TR, 1993. Onchocerca volvulus: characterization of an immunodominant hypodermal antigen present in adult and larval parasites. Exp Parasitol 77: 414424.

    • Search Google Scholar
    • Export Citation
  • 47.

    Feeser KR, Cama V, Priest JW, Thiele EA, Wiegand RE, Lakwo T, Feleke SM, Cantey PT, 2017. Characterizing reactivity to Onchocerca volvulus antigens in multiplex bead assays. Am J Trop Med Hyg 97: 666672.

    • Search Google Scholar
    • Export Citation
  • 48.

    Lammie PJ, Weil G, Noordin R, Kaliraj P, Steel C, Goodman D, Lakshmikanthan VB, Ottesen E, 2004. Recombinant antigen-based antibody assays for the diagnosis and surveillance of lymphatic filariasis–a multicenter trial. Filaria J 3: 9.

    • Search Google Scholar
    • Export Citation
  • 49.

    Rao KV, Eswaran M, Ravi V, Gnanasekhar B, Narayanan RB, Kaliraj P, Jayaraman K, Marson A, Raghavan N, Scott AL, 2000. The Wuchereria bancrofti orthologue of Brugia malayi SXP1 and the diagnosis of bancroftian filariasis. Mol Biochem Parasitol 107: 7180.

    • Search Google Scholar
    • Export Citation
  • 50.

    Lu J, Holmgren A, 2014. The thioredoxin superfamily in oxidative protein folding. Antioxid Redox Signal 21: 457470.

  • 51.

    Kunchithapautham K, Padmavathi B, Narayanan RB, Kaliraj P, Scott AL, 2003. Thioredoxin from Brugia malayi: defining a 16-kilodalton class of thioredoxins from nematodes. Infect Immun 71: 41194126.

    • Search Google Scholar
    • Export Citation
  • 52.

    Ditgen D, Anandarajah EM, Hansmann J, Winter D, Schramm G, Erttmann KD, Liebau E, Brattig NW, 2016. Multifunctional thioredoxin-like protein from the gastrointestinal parasitic Nematodes Strongyloides ratti and Trichuris suis affects mucosal homeostasis. J Parasitol Res 2016: 8421597.

    • Search Google Scholar
    • Export Citation
  • 53.

    Krolewiecki AJ 2010. Improved diagnosis of Strongyloides stercoralis using recombinant antigen-based serologies in a community-wide study in northern Argentina. Clin Vaccine Immunol 17: 16241630.

    • Search Google Scholar
    • Export Citation
  • 54.

    Hamlin KL, Moss DM, Priest JW, Roberts J, Kubofcik J, Gass K, Streit TG, Nutman TB, Eberhard ML, Lammie PJ, 2012. Longitudinal monitoring of the development of antifilarial antibodies and acquisition of Wuchereria bancrofti in a highly endemic area of Haiti. PLoS Negl Trop Dis 6: e1941.

    • Search Google Scholar
    • Export Citation

 

 

 

 

Development of a Multiplex Bead Assay for the Detection of IgG Antibody Responses to Guinea Worm

View More View Less
  • 1 Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia;
  • 2 Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia;
  • 3 Institute of Tropical Medicine, University of Tubingen, Tubingen, Germany;
  • 4 Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia;
  • 5 World Health Organization Collaborating Center for Dracunculiasis Eradication, Centers for Disease Control and Prevention, Atlanta, Georgia

ABSTRACT

The success of the Guinea Worm (GW) Eradication Program over the past three decades has been tempered by the persistence of GW disease in a few African nations and the potential for a future resurgence in cases. Domestic dogs are now a major concern as a disease reservoir as large numbers of cases of canine GW disease are now reported each year, mainly along the Chari River in Chad. As a first step toward the development of a serologic assay for dogs, archived human plasma samples from dracunculiasis-positive donors from Togo were used to select adult female GW antigens for peptide sequencing and cloning. Eight protein sequences of interest were expressed as recombinant glutathione-S-transferase (GST) fusion proteins, and the most promising proteins were coupled to carboxylated microspheres for use in multiplex assays. A thioredoxin-like protein (TRXL1) and a domain of unknown function (DUF148) were assessed for total IgG and IgG4 reactivities using a panel of specimens from GW cases, uninfected donors, and individuals infected with various nematode worms, including Onchocerca volvulus. Both the DUF148-GST and the TRXL1-GST assays cross-reacted with O. volvulus sera, but the latter assay was always the more specific. The IgG4 and total IgG TRXL1-GST assays both had sensitivities > 87% and specificities > 90%. Maximum specificity (> 96%) was obtained with the total IgG assay when reactivity to both antigens was used to define a positive case. Given the good performance of the human assay, we are now working to modify the assay for dog assessments.

    • Supplemental Materials (PPTX 1.84 MB)
    • Supplemental Materials (DOCX 39 KB)

Author Notes

Address correspondence to Jeffrey W. Priest, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329. E-mail: jpriest@cdc.gov

Disclaimer: Use of trade names is for identification only and does not imply endorsement by the Public Health Service or by the U.S. Department of Health and Human Services. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the U.S. Centers for Disease Control and Prevention or any other institution.

Financial support: The Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria at the CDC serves as a WHO Collaborating Center for Dracunculiasis Eradication and received funding from the Carter Center in support of those activities.

Authors’ addresses: Jeffrey W. Priest, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, E-mail: jpriest@cdc.gov. Olga Stuchlik and Matthew Reed, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, E-mails: hus0@cdc.gov and iej4@cdc.gov. Peter Soboslay, Institute of Tropical Medicine, University of Tubingen, Tubingen, Germany, E-mail: peter.soboslay@uni-tuebingen.de. Vitaliano Cama and Sharon L. Roy, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, E-mails: vec5@cdc.gov and str2@cdc.gov.

Save