• 1.

    Brady OJ, Hay SI, 2020. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Ann Rev Entomol 65: 191208.

    • Search Google Scholar
    • Export Citation
  • 2.

    Messina JP et al. 2019. The current and future global distribution and population at risk of dengue. Nat Microbiol 4: 15081515.

  • 3.

    Weaver SC, Charlier C, Vasilakis N, Lecuit M, 2018. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu Rev Med 69: 395408.

  • 4.

    Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, Lindsay SW, 2020. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis 14: e0007831.

    • Search Google Scholar
    • Export Citation
  • 5.

    World Health Organization, 2016. Mosquito (Vector) Control Emergency Response and Preparedness for Zika Virus. Geneva, Switzerland: WHO. Available at: https://www.who.int/neglected_diseases/news/mosquito_vector_control_response/en/. Accessed May 9, 2020.

    • Search Google Scholar
    • Export Citation
  • 6.

    Dunbar MW et al. 2019. Efficacy of novel indoor residual spraying methods targeting pyrethroid-resistant Aedes aegypti within experimental houses. PLoS Negl Trop Dis 13: e0007203.

    • Search Google Scholar
    • Export Citation
  • 7.

    Dzul-Manzanilla F, Ibarra-Lopez J, Bibiano-Marin W, Martini-Jaimes A, Leyva JT, Correa-Morales F, Huerta H, Manrique-Saide P, Vazquez-Prokopec GM, 2017. Indoor resting behavior of Aedes aegypti (Diptera: Culicidae) in Acapulco, Mexico. J Med Entomol 54: 501504.

    • Search Google Scholar
    • Export Citation
  • 8.

    Perich MJ, Davila G, Turner A, Garcia A, Nelson M, 2000. Behavior of resting Aedes aegypti (Culicidae: Diptera) and its relation to ultra-low volume adulticide efficacy in Panama city, Panama. J Med Entomol 37: 541546.

    • Search Google Scholar
    • Export Citation
  • 9.

    Vazquez-Prokopec G, Montgomery MBL, Horne P, Clennon JA, Ritchie SA, 2017. Combining contact tracing with targeted indoor residual spraying significantly reduces dengue transmission. Sci Adv 3: e1602024.

    • Search Google Scholar
    • Export Citation
  • 10.

    Pan American Health Organization, 2019. Manual for Indoor Residual Spraying in Urban Areas for Aedes aegypti Control. Washington, DC: PAHO. Available at: https://iris.paho.org/handle/10665.2/51637. Accessed May 19, 2020.

    • Search Google Scholar
    • Export Citation
  • 11.

    Gartner C, Ritchie S, Capra M, 2001. Laboratory evaluation of an aerosol insecticide surface spray against the mosquito Aedes aegypti. J Environ Health 1: 6166.

    • Search Google Scholar
    • Export Citation
  • 12.

    Pai HH, Hsu EL, 2014. Effectiveness and acceptance of total release insecticidal aerosol cans as a control measure in reducing dengue vectors. J Environ Health 76: 6874.

    • Search Google Scholar
    • Export Citation
  • 13.

    Gray L, Dzib-Florez S, Medina A, Vadillo-Sánchez J, González-Olvera G, Lenhart A, Manrique-Saide P, Vazquez-Prokopec GM, 2018. Experimental evaluation of the impact of household aerosolized insecticides on pyrethroid resistant Aedes aegypti. Sci Rep 8: 125135.

    • Search Google Scholar
    • Export Citation
  • 14.

    Loroño-Pino MA et al. 2013. Towards a Casa Segura: a consumer product study of the effect of insecticide-treated curtains on Aedes aegypti and dengue virus infections in the home. Am J Trop Med Hyg 89: 385397.

    • Search Google Scholar
    • Export Citation
  • 15.

    Rosecrans K, Cruz-Martin G, King A, Dumonteil E, 2014. Opportunities for improved Chagas disease vector control based on knowledge, attitudes and practices of communities in the Yucatan peninsula, Mexico. PLoS Negl Trop Dis 8: e2763.

    • Search Google Scholar
    • Export Citation
  • 16.

    Hladish TJ, Pearson CA, Chao DL, Rojas DP, Recchia GL, Gomez-Dantes H, Halloran ME, Pulliam JRC, Longini IM, 2016. Projected impact of dengue vaccination in Yucatan, Mexico. PLoS Negl Trop Dis 10: e0004661.

    • Search Google Scholar
    • Export Citation
  • 17.

    Hladish TJ, Pearson CAB, Rojas P, Gomez-Dantes H, Halloran ME, Vazquez-Prokopec GM, Logini IM, 2018. Forecasting the effectiveness of indoor residual spraying for reducing dengue burden. PLoS Negl Trop Dis 12: e0006570.

    • Search Google Scholar
    • Export Citation
  • 18.

    Bisanzio D et al. 2018. Spatiotemporal coherence of dengue, chikungunya and Zika outbreaks in Merida, Mexico. PLoS Negl Trop Dis 12: e0006298.

  • 19.

    Deming R, Manrique-Saide P, Medina Barreiro A, Cardeña EUK, Che-Mendoza A, Jones B, Liebman K, Vizcaino L, Vazquez-Prokopec G, Lenhart A, 2016. Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasites Vectors 9: 67.

    • Search Google Scholar
    • Export Citation
  • 20.

    Vazquez-Prokopec GM et al. 2017. Deltamethrin resistance in Aedes aegypti results in treatment failure in Merida, Mexico. PLoS Negl Trop Dis 11: e0005656.

    • Search Google Scholar
    • Export Citation
  • 21.

    World Health Organization, 2006. Guidelines for Testing Mosquito Adulticides for Indoor Residual Spraying and Treatment of Mosquito Nets. Geneva, Switzerland: WHO. Available at: https://apps.who.int/iris/handle/10665/69296. Accessed May 11, 2020.

    • Search Google Scholar
    • Export Citation
  • 22.

    Vazquez-Prokopec GM, Kitron U, Montgomery B, Horne P, Ritchie SA, 2010. Quantifying the spatial dimension of dengue virus epidemic spread within a tropical urban environment. PLoS Negl Trop Dis 4: e920.

    • Search Google Scholar
    • Export Citation
  • 23.

    Paz-Soldán VA et al. 2018. To spray or not to spray? Understanding participation in an indoor residual spray campaign in Arequipa, Peru. Glob Public Health 13: 6582.

    • Search Google Scholar
    • Export Citation
  • 24.

    Dzib-Florez S et al. 2020. Bio-efficacy of commercially available residual insecticides for the control of Aedes aegypti in Mexico. J Am Mosquito Control Assoc 36: 1621.

    • Search Google Scholar
    • Export Citation
  • 25.

    Loroño-Pino MA, Chan-Dzul YN, Zapata-Gil R, Carrillo-Solís C, Uitz-Mena A, García-Rejón JE, Keefe TK, Beaty BJ, Eisen L, 2014. Household use of insecticide consumer products in a dengue-endemic area in México. Trop Med Int Health 19: 12671275.

    • Search Google Scholar
    • Export Citation
  • 26.

    Che-Mendoza A, 2016. Evaluation of Impact of Long-Lasting Insecticidal House Screening (LLIS) on Pyrethroid Resistant Population of the Dengue Vector Aedes aegypti in Mexico. PhD Thesis, University of Liverpool, Liverpool, UK.

    • Search Google Scholar
    • Export Citation
  • 27.

    Kuri-Morales PA, Correa-Morales F, González-Acosta C, Moreno-Garcia M, Santos-Luna R, Román-Pérez S, Salazar-Penagos F, Lombera-González M, Sánchez-Tejeda G, González-Roldán JF, 2018. Insecticide susceptibility status in Mexican populations of Stegomyia aegypti (= Aedes aegypti): a nationwide assessment. Med Vet Entomol 32: 162174.

    • Search Google Scholar
    • Export Citation
  • 28.

    Saavedra-Rodriguez K et al. 2015. Local evolution of pyrethroid resistance offsets gene flow among Aedes aegypti collections in Yucatan state, Mexico. Am J Trop Med Hyg 92: 201209.

    • Search Google Scholar
    • Export Citation
  • 29.

    Thomson Reuters, 2020. ‘Dengue Kills Too’ - Latin America Faces Two Epidemics at Once. New York. Available at: https://www.reuters.com/article/us-health-coronavirus-latam-dengue-featu/dengue-kills-too-latin-america-faces-two-epidemics-at-once-idUSKBN22O1W2. Accessed May 17, 2020.

    • Search Google Scholar
    • Export Citation
  • 30.

    Kuri-Morales P, Correa-Morales AF, González-Acosta C, Moreno-Garcia M, Dávalos-Becerril E, Benitez-Alva JI, Peralta-Rodriguez J, Salazar-Bueyes V, González-Roldán JF, 2018. Efficacy of 13 commercial household aerosol insecticides against Aedes aegypti (Diptera: Culicidae) from Morelos, Mexico. J Med Entomol 55: 417422.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 
 
 

 

 

 

 

 

 

Evaluating Over-the-Counter Household Insecticide Aerosols for Rapid Vector Control of Pyrethroid-Resistant Aedes aegypti

View More View Less
  • 1 Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México;
  • | 2 Laboratorio de Entomología Médica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México;
  • | 3 Servicios de Salud de Yucatán (SSY), Mérida, México;
  • | 4 Faculty of Agriculture, Assiut University, Assiut, Egypt;
  • | 5 Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom;
  • | 6 Department of Environmental Sciences, Emory University, Atlanta, Georgia

ABSTRACT

Vector control methods that mobilize and impact rapidly during dengue, Zika, and chikungunya outbreaks are urgently needed in urban contexts. We investigated whether one person using a handheld aerosolized insecticide could achieve efficacy levels comparable to targeted indoor residual spraying (TIRS), using pyrethroid-resistant Aedes aegypti in a semi-field setting with experimental houses in Mexico. The insecticide product (H24, a carbamate and pyrethroid mixture), available over-the-counter locally, was sprayed only on known Ae. aegypti–resting surfaces, for example, walls less than 1.5 m and dark hidden areas. In six identical houses with paired bedrooms, one bedroom was treated, and the other remained an untreated control. Each week for 8 weeks, 100 female pyrethroid-resistant Ae. aegypti were released in each bedroom and followed up daily. Mortality rates in treated bedrooms exceeded 90% for at least 2 weeks, and more than 80% (89.2; 95% CI: 79.98–98.35) for 3 weeks or more. Mortality rates in control houses were zero. Results demonstrate that the immediate impact of TIRS can be delivered by one person using existing products, at an estimated cost for the average household in Mexico of under US$3 per month. Triggered by early outbreak signs, dissemination via community hubs and mass/social media of instructions to treat the home immediately, with monthly re-treatment thereafter, provides a simple means to engage and empower householders. Compatible with integrated vector management strategies, it enables self-protection even if existing agencies falter, a situation exemplified by the potential impact on vector control of the restrictions imposed during the 2020 COVID-19 pandemic.

Author Notes

Address correspondence to Pablo Manrique-Saide, Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Km. 15.5 Carr. Mérida-Xmatkuil s.n., Mérida 97315, México. E-mail: pablo_manrique2000@hotmail.com

Disclaimer: Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the institutions involved in this study.

Financial support: This study was funded by a grant from CONACYT Mexico (Project no. 255141; P. M.-S., PI) and by the National Institutes of Health, the National Institute of Allergy and Infectious Disease (U01AI148069; G. V.-P., PI).

Authors’ addresses: Sergio Dzib-Florez, Anuar Medina-Barreiro, Yamili Contreras-Perera, Felipe Del Castillo-Centeno, Azael Che-Mendoza, and Pablo Manrique-Saide, Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México, E-mails: sergiodzibflorez2014@gmail.com, anuar116@hotmail.com, yamjaz_85@hotmail.com, luisfdcc@hotmail.com, sale_moda@yahoo.com, achemendoza_vectores@hotmail.com, and pablo_manrique2000@hotmail.com. Gustavo Ponce-García, Laboratorio de Entomología Médica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México, E-mail: gponcealfa@gmail.com. Gabriela González-Olvera, Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México, and Servicios de Salud de Yucatán (SSY), Mérida, México, E-mail: gabygzzo@gmail.com. Ahmed M. M. Ahmed, Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México, and Faculty of Agriculture, Assiut University, Assiut, Egypt, E-mail: sale_moda@yahoo.com. Philip McCall, Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom, E-mail: philip.mccall@lstmed.ac.uk. Gonzalo Vazquez-Prokopec, Department of Environmental Sciences, Emory University, Atlanta, GA, E-mail: gmvazqu@emory.edu.

Save