• 1.

    Aoun K, Bouratbine A, 2014. Cutaneous leishmaniasis in North Africa: a review. Parasite 21: 19.

  • 2.

    Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S, 2007. Cutaneous leishmaniasis. Lancet Infect Dis 7: 581596.

  • 3.

    Aoun K, Ben Abda I, Bousslimi N, Bettaieb J, Siala E, Ben Abdallah R, Benmously R, Bouratbine A, 2012. Comparative characterization of skin lesions observed in the three endemic varieties of cutaneous leishmaniasis in Tunisia. Ann Dermatol Venereol 139: 452458.

    • Search Google Scholar
    • Export Citation
  • 4.

    Gradoni L, López-Vélez R, Mokni M, 2017. Manual on Case Management and Surveillance of the Leishmaniases in the WHO European Region. Copenhagen, Denmark: WHO Regional Office for Europe.

    • Search Google Scholar
    • Export Citation
  • 5.

    Nacher M, Carme B, Sainte Marie D, Couppié P, Clyti E, Guibert P, Pradinaud R, 2001. Seasonal fluctuations of incubation, healing delays, and clinical presentation of cutaneous leishmaniasis in French Guiana. J Parasitol 87: 14951498.

    • Search Google Scholar
    • Export Citation
  • 6.

    Rioux JA, Lanotte G, Serres E, Pratlong F, Bastien P, Perieres J, 1990. Taxonomy of Leishmania. Use of isoenzymes. Suggestion for a new classification. Ann Parasit Hum Comp 65: 111115.

    • Search Google Scholar
    • Export Citation
  • 7.

    Schönian G, Schnur L, El Fari M, Oskam L, Kolesnikov AA, Sokolowska-Köhler W, Presber W, 2001. Genetic heterogeneity in the species Leishmania tropica revealed by different PCR-based methods. Trans R Soc Trop Med Hyg 95: 217224.

    • Search Google Scholar
    • Export Citation
  • 8.

    World Health Organization, 2020. Leishmaniasis. Geneva, Switzerland: WHO. Available at: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis. Accessed March 2, 2020.

    • Search Google Scholar
    • Export Citation
  • 9.

    Felinto de Brito ME, Andrade MS, Lima de Almeida E, Medeiros AC, Pereira Werkhäuser R, Freitas de Araújo AI, Brandão-Filho S, de Almeida AM, Gomes Rodrigues EH, 2012. Occupationally acquired American cutaneous leishmaniasis. Case Rep Dermatol Med 2012: 279517.

    • Search Google Scholar
    • Export Citation
  • 10.

    Oré M et al. 2015. Outbreak of cutaneous leishmaniasis in Peruvian military personnel undertaking training activities in the Amazon basin, 2010. Am J Trop Med Hyg 93: 340346.

    • Search Google Scholar
    • Export Citation
  • 11.

    Chelbi I, Derbali M, Al-Ahmadi Z, Zaafouri B, El Fahem A, Zhioua E, 2007. Phenology of Phlebotomus papatasi (diptera: psychodidae) relative to the seasonal prevalence of zoonotic cutaneous leishmaniasis in central Tunisia. J Med Entomol 44: 385388.

    • Search Google Scholar
    • Export Citation
  • 12.

    Launois P, Conceicao-Silva F, Himmerlich H, Parra-Lopez C, Tacchini-Cottier F, Louis JA, 1998. Setting in motion the immune mechanisms underlying genetically determined resistance and susceptibility to infection with Leishmania major. Parasite Immunol 20: 223230.

    • Search Google Scholar
    • Export Citation
  • 13.

    Chang KP, Mc Gwiere BS, 2002. Molecular determinants and regulation of Leishmania virulence. Kinetoplastid Biol Dis 1: 17.

  • 14.

    Darabi S, Khaze V, Riazi-Rad F, Darabi H, Bahrami F, Ajdary S, Alimohammadian MH, 2015. Leishmania major strains isolated from distinct endemic areas show diverse cytokine mRNA expression levels in C57BL/6 mice: toward selecting an ideal strain for the vaccine studies. Cytokine 76: 303308.

    • Search Google Scholar
    • Export Citation
  • 15.

    Kébaïer C, Louzir H, Chenik M, Ben Salah A, Dellagi K, 2001. Heterogeneity of wild Leishmania major isolates in experimental murine pathogenicity and specific immune response. Infect Immun 69: 49064915.

    • Search Google Scholar
    • Export Citation
  • 16.

    Ghouila A, Guerfali FZ, Atri C, Bali A, Attia H, Sghaier RM, Mkannez G, Dickens NJ, Laouini D, 2017. Comparative genomics of Tunisian Leishmania major isolates causing human cutaneous leishmaniasis with contrasting clinical severity. Infect Genet Evol 50: 110120.

    • Search Google Scholar
    • Export Citation
  • 17.

    Jude E, Uzonna JE, Joyce KL, Scott P, 2004. Low dose Leishmania major promotes a transient T helper cell type 2 response that is down-regulated by interferon-producing CD8 T cells. J Exp Med 199: 15591566.

    • Search Google Scholar
    • Export Citation
  • 18.

    Titus RG, Ribeiro JM, 1988. Salivary gland lysates of the sandfly Lutzomyia longipalpis enhance Leishmania infectivity. Science 239: 13061308.

    • Search Google Scholar
    • Export Citation
  • 19.

    Gimblet C et al. 2017. Cutaneous leishmaniasis induces a transmissible dysbiotic skin microbiota that promotes skin inflammation. Cell Host Microbe 22: 1324.e4.

    • Search Google Scholar
    • Export Citation
  • 20.

    Aoun K, Chetoui A, Rhaiem A, Ghrab J, Dani R, Bouratbine A, 2005. Early cutaneous leishmaniasis in a 7-day-old newborn. Med Trop 65: 394395.

 
 
 
 

 

 
 

 

 

 

 

 

 

Assessment of Incubation Period of Cutaneous Leishmaniasis due to Leishmania major in Tunisia

View More View Less
  • 1 Laboratory of Medical Parasitology, Biotechnology and Biomolecules (LR 16-IPT-06), Pasteur Institute of Tunis, El Manar University, Tunis, Tunisia;
  • | 2 Department of Epidemiology and Ecology of Parasites, Pasteur Institute of Tunis, Tunis, Tunisia;
  • | 3 Department of Parasitology and Mycology, Pasteur Institute of Tunis, Tunis, Tunisia;
  • | 4 Department of Dermatology, Habib Thameur Hospital, Tunis, Tunisia;
  • | 5 Department of Epidemiology, Abderrahmane Mami Hospital, Ariana, Tunisia

ABSTRACT

The period between the infective sandfly bites and appearance of cutaneous leishmaniasis (CL) lesions is still hypothetical and little studied. This work aimed at assessing the incubation time of zoonotic CL (ZCL) due to Leishmania major using a standardized methodology. The retrospective analysis used the epidemiological, clinical, and biological information available in the database recording all the CL cases diagnosed at the Parasitology Department of the Pasteur Institute of Tunis during 2015–2019. It allowed for the selection of 92 privileged observations 1) of confirmed CL cases with presentation suggestive of ZCL form 2) living in northern regions free of ZCL 3) with a single infective trip of less than a week to ZCL foci during transmission season and 4) with accurate dates of travel and onset of lesions. Incubation length computed in this population ranged from 1 to 21 weeks, with a median of 5 weeks (interquartile range: 3–8.5 weeks).

Author Notes

Address correspondence to Aïda Bouratbine, Laboratory of Medical Parasitology, Biotechnology and Biomolecules, 13 Pl. Pasteur, BP 74, 1002 Tunis, Tunisia. E-mails: aida.bouratbine@pasteur.rns.tn or bouratbine.aida@gmail.com

Financial support: This work was supported by the Tunisian Ministry of Higher Education and Scientific Research in the frame of the Research Lab LR-11-IPT-06.

Authors’ addresses: Karim Aoun, Yasmine Kalboussi, Ines Ben Sghaier, Olfa Souissi, and Aïda Bouratbine, Laboratory of Medical Parasitology, Biotechnology and Biomolecules, Pasteur Institute of Tunis, El Manar University, Tunis, Tunisia, E-mails: karim.aoun@pasteur.rns.tn, kalboussi.yasmine@gmail.com, ines.bensghaier@gmail.com, souissiolfa75@yahoo.fr, and aida.bouratbine@pasteur.rns.tn. Houda Hammami, Department of Dermatology, Habib Thameur Hospital, Tunis, Tunisia, Email: hammamighorbel@yahoo.fr. Hedia Bellali, Department of Epidemiology, Abderrahmane Mami Hospital, Ariana, Tunisia, Email: hedia.bellali@gmail.com.

Save