• View in gallery

    Meiotic metaphases of the species Rhodnius montenegrensis (A) and Panstrongylus megistus (B). Note the presence of RNA in nucleolar material (arrows) in red and DNA in chromosomes in yellow. Bar: 10 μm.

  • 1.

    Lent H, Wygodzinsky P, 1979. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’s disease. Bull Am Mus Nat Hist 163: 123520.

    • Search Google Scholar
    • Export Citation
  • 2.

    Oliveira J, Alevi KCC, 2017. Taxonomic status of Panstrongylus herreri Wygodzinsky, 1948 and the number of Chagas disease vectors. Rev Soc Bras Med Trop 50, 434435.

    • Search Google Scholar
    • Export Citation
  • 3.

    Dorn PL, Justi SA, Dale C, Stevens L, Galvão C, Lima-Cordón R, Monrot C, 2018. Description of Triatoma mopan sp. n. from a cave in Belize (Hemiptera, Reduviidae, Triatominae). ZooKeys 775: 6995.

    • Search Google Scholar
    • Export Citation
  • 4.

    Oliveira J, Ayala JM, Justi SA, Rosa JA, Galvão C, 2018. Description of a new species of Nesotriatoma Usinger, 1944 from Cuba and revalidation of synonymy between Nesotriatoma bruneri (Usinger, 1944) and N. flavida (Neiva, 1911) (Hemiptera, Reduviidae, Triatominae). J Vector Ecol 43: 148157.

    • Search Google Scholar
    • Export Citation
  • 5.

    Poinar G, 2019. A primitive triatomine bug, Paleotriatoma metaxytaxa gen. et sp. nov. (Hemiptera: Reduviidae: Triatominae), in mid-Cretaceous amber from northern Myanmar. Cretaceous Res 93: 9097.

    • Search Google Scholar
    • Export Citation
  • 6.

    Lima-Cordón RA, Monroy MC, Stevens L, Rodas A, Rodas GA, Dorn PL, Justi SA, 2019. Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae). ZooKeys 820: 5170.

    • Search Google Scholar
    • Export Citation
  • 7.

    Noireau F, Diosque P, Jansen AM, 2009. Trypanosoma cruzi: adaptation to its vectors and its hosts. Vet Res 40: 26.

  • 8.

    World Health Organization, 2019. Weekly Epidemiological Record. Chagas disease (American trypanosomiasis). Available at: http://www.who.int/chagas/en/. Accessed January 25, 2019.

    • Search Google Scholar
    • Export Citation
  • 9.

    World Health Organization, 2018. Weekly Epidemiological Record. Chagas disease (American trypanosomiasis). Available at: http://www.who.int/chagas/en/. Accessed August 08, 2018.

    • Search Google Scholar
    • Export Citation
  • 10.

    Ueshima N, 1966. Cytotaxonomy of the triatominae (Reduviidae: Hemiptera). Chromosoma 18: 97122.

  • 11.

    Tartarotti E, Azeredo-Oliveira MTV, 1999. Patterns of nucleolar activity during spermatogenesis of two triatomines, Panstrongylus megistus and P. Herreri. Caryol 52: 177184.

    • Search Google Scholar
    • Export Citation
  • 12.

    Johnson L, Blanchard TL, Varner DD, Scrutchfield WL, 1997. Factors affecting spermatogenesis in the stallion. Theriogenology 48: 11991216.

  • 13.

    Alevi KCC, Castro NFC, Lima ACC, Ravazi A, Morielle‐Souza A, Oliveira J, Rosa JA, Azeredo-Oliveira MTV, 2014. Nucleolar persistence during spermatogenesis of the genus Rhodnius (Hemiptera, Triatominae). Cell Biol Int 38: 977980.

    • Search Google Scholar
    • Export Citation
  • 14.

    Gonzáez-García JM, Rufas JS, Antonio C, Suja JA, 1995. Nucleolar cycle and localization of NORs in early embryos of Parascaris univalens. Chromosoma 104: 287297.

    • Search Google Scholar
    • Export Citation
  • 15.

    Castanhole MMU, Pereira LLV, Bicudo HEMC, Costa LA, Itoyama MM, 2008. Heteropicnotic chromatin and nucleolar activity in meiosis and spermiogenesis of Limnogonus aduncus (Heteroptera, Gerridae): a stained nucleolar organizing region that can serve as a model for studying chromosome behavior. Genet Mol Res 7: 13981407.

    • Search Google Scholar
    • Export Citation
  • 16.

    Pereira LLV, Alevi KCC, Moreira FFF, Barbosa JF, Silistino-Souza ER, Junior FS, Souza-Firmino TS, Banho CA, Itoyama MM, 2015. Study of nucleolar behavior during spermatogenesis in Martarega brasiliensis (Heteroptera, Notonectidae). Genet Mol Res 14: 89888994.

    • Search Google Scholar
    • Export Citation
  • 17.

    Madeira FF, Borsatto KC, Lima ACC, Ravazi A, de Oliveira J, da Rosa JA, de Azeredo-Oliveira MT, Alevi KC, 2016. Nucleolar persistence: peculiar characteristic of spermatogenesis of the vectors of Chagas disease (Hemiptera, triatominae). Am J Trop Med Hyg 95, 11181120.

    • Search Google Scholar
    • Export Citation
  • 18.

    Morielle A, Azeredo-Oliveira MTV, 2004. Description of the nucleolar activity and karyotype in germinative cell lines of Rhodnius domesticus (Triatominae, Heteroptera). Caryol 57: 3137.

    • Search Google Scholar
    • Export Citation
  • 19.

    Morielle A, Azeredo-Oliveira MTV, 2007. Differential characterization of holocentric chromosomes in triatomines (Heteroptera, Triatominae) using different staining techniques and fluorescent in situ hybridization. Genet Mol Res 6: 713720.

    • Search Google Scholar
    • Export Citation
  • 20.

    Severi-Aguiar GDC, Azeredo-Oliveira MTV, 2005. Cytogenetic study on three species of the genus Triatoma (Heteroptera: Reduviidae) with emphasis on nucleolar organizer regions. Caryol 58: 293299.

    • Search Google Scholar
    • Export Citation
  • 21.

    Severi-Aguiar GDC, Lourenço LB, Bicudo HEMC, Azeredo-Oliveira MTV, 2006. Meiosis aspects and nucleolar activity in Triatoma vitticeps (Triatominae, Heteroptera). Genetica 126: 141151.

    • Search Google Scholar
    • Export Citation
  • 22.

    Bardella VB, Azeredo-Oliveira MTV, Tartarotti E, 2008. Cytogenetic analysis in the spermatogenesis of Triatoma melanosoma (Reduviidae; Heteroptera). Genet Mol Res 7: 326335.

    • Search Google Scholar
    • Export Citation
  • 23.

    Costa LC, Azeredo-Oliveira MTV, Tartarotti E, 2008. Spermatogenesis and nucleolar activity in Triatoma klugi (Triatomine, Heteroptera). Genet Mol Biol 31, 438444.

    • Search Google Scholar
    • Export Citation
  • 24.

    Alevi KCC, Mendonça PP, Pereira NP, Rosa JA, Azeredo-Oliveira MTV, 2013. Análise das possíveis Regiões Organizadoras Nucleolares e da atividade nucleolar em Triatoma melanocephala e T. lenti, importantes vetores da doença de Chagas. Rev Ciênc Farmac Básica Apl 34: 417421.

    • Search Google Scholar
    • Export Citation
  • 25.

    Pereira NP, Alevi KCC, Mendonça PP, Azeredo-Oliveira MTV, 2015. Spermatogenesis and nucleolar behavior in Triatoma vandae and Triatoma williami (Hemiptera, Triatominae). Genet Mol Res 4: 1214512151.

    • Search Google Scholar
    • Export Citation
  • 26.

    Howell WM, Black DA, 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36, 10141015.

    • Search Google Scholar
    • Export Citation
  • 27.

    Vidal BC, 1987. Métodos em Biologia Celular. Vidal BC, Mello MLS, eds. Biologia Celular. São Paulo, Brazil: Editora Atheneu, 534.

  • 28.

    Soares AC, Carvalho-Tavares J, Gontijo NF, Santos VC, Teixeira MM, Pereira MH, 2006. Salivation pattern of Rhodnius prolixus (Reduviidae; Triatominae) in mouse skin. J Insect Physiol 52: 468472.

    • Search Google Scholar
    • Export Citation
  • 29.

    Morielle-Souza A, Azeredo-Oliveira MTV, 2008. Study of the nucleolar cycle and ribosomal RNA distribution during meiosis in triatomines (Triatominae, Heteroptera). Micron 39: 10201026.

    • Search Google Scholar
    • Export Citation
  • 30.

    Alevi KCC, Mendonça PP, Pereira NP, Rosa JA, Azeredo-Oliveira MTV, 2014. Is there post-meiotic transcriptional activity during hemipteran spermiogenesis?. Invertebr Reprod Dev 58: 193198.

    • Search Google Scholar
    • Export Citation
  • 31.

    Borgueti AO, Alevi KCC, Silistino-Souza R, Rosa JA, Azeredo-Oliveira MTV, 2015. Immunofluorescence and ultrastructural analysis of the chromatoid body during spermatogenesis of Triatoma platensis and T. rubrovaria (Hemiptera, Triatominae). Micron 74: 4446.

    • Search Google Scholar
    • Export Citation
  • 32.

    Schmid M, Löser C, Schmidtke J, Engel W, 1982. Evolutionary conservation of a common pattern of activity of nucleolus organizer during spermatogenesis in vertebrates. Chromosoma 86: 149178.

    • Search Google Scholar
    • Export Citation
  • 33.

    Paniagua R, Nistal M, Amat P, Rodriguez MC, 1986. Ultrastructural observations on nucleoli and related structures during human spermatogenesis. Anat Embryol 174: 301306.

    • Search Google Scholar
    • Export Citation
  • 34.

    Peruquetti RL, Assis IM, Taboga SR, Azeredo-Oliveira MTV, 2008. Meiotic nucleolar cycle and chromatoid body formation during the rat (Rattus novergicus) and mouse (Mus musculus) spermiogenesis. Micron 39: 419425.

    • Search Google Scholar
    • Export Citation
  • 35.

    Kotaja N, Sassone-Corsi P, 2007. The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol 8: 8590.

  • 36.

    Braun RE, 1998. Post-transcriptional control of gene expression during spermatogenesis. Semin Cell Dev Biol 9: 483489.

  • 37.

    Kotaja N, Bhattacharyya SN, Jaskiewicz L, Kimmins S, Parvinen M, Filipowicz W, Sassone-Corsi P, 2006. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci USA 103: 26472652.

    • Search Google Scholar
    • Export Citation
  • 38.

    Meikar O et al. 2014. An atlas of chromatoid body components. RNA 20: 483495.

 
 
 

 

 
 
 

 

 

 

 

 

 

Reproductive Aspects of Chagas Disease Vectors: Evidence of Transcriptional Activity during the Nucleolar Persistence Phenomenon in the Spermatogenesis of Triatomines

View More View Less
  • 1 Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil;
  • | 2 Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara, Brazil

The subfamily Triatominae currently consists of 154 species, most of them being of great importance for public health because they are considered potential vectors of the protozoan Trypanosoma cruzi, the etiologic agent of Chagas disease. In addition to their epidemiological importance, these insects are considered important biological models for cell studies because they have peculiar characteristics in their cells, for example, persistence of the nucleolus during spermatogenesis. This phenomenon is characterized by the presence of the nucleolus or nucleolar corpuscles during all phases of meiosis. To date, all knowledge is restricted to the study of the presence/absence of the nucleolus during the triatomine meiosis, so the present work aimed to analyze if this persistent nucleolar material has transcriptional activity. Analysis of the meiotic metaphases of Rhodnius montenegrensis and Panstrongylus megistus by using fluorochrome acridine orange made it possible to characterize the presence of RNA in the nucleolar material. Thus, it was demonstrated, for the first time, that the persistent nucleolar material during triatomine meiosis is transcriptionally active, supporting the hypothesis of the relationship between nucleolar persistence during meiosis of these insects and the formation of the chromoid body, an organelle responsible for the support of all transcriptional activities during spermiogenesis.

INTRODUCTION

The triatomines belong to the Hemiptera order, Heteroptera suborder, Reduviidae family, and Triatominae subfamily.1 Currently, there are 154 species described in the subfamily Triatominae (151 valid species and three fossil species), comprising 19 genera and five tribes,26 all are considered susceptible to infection by the protozoan Trypanosoma cruzi (Kinetoplastida, Trypanosomatidae) and, consequently, considered as potential vectors of Chagas disease.7

Chagas disease is a neglected tropical disease, which affects about eight million people and puts at risk approximately another 25 million,8 with vector control being one of the most effective actions to minimize the incidence of new chagasic cases.9 In addition to the epidemiological importance, triatomines are important biological models for cell studies, as they present some peculiarities when compared with other eukaryotes, such as holocentric chromosomes with diffuse kinetochrome, inverted meiosis for sex chromosomes, and nucleolar persistence in the spermatogenesis.10,11

Spermatogenesis consists of three phases, namely, spermatocytogenesis or proliferation phase; meiosis or multiplication phase; and spermiogenesis or differentiation phase.12 The phenomenon of nucleolar persistence is characterized by the presence of the nucleolus or nucleolar corpuscles during all phases of meiosis.13 This nucleolar behavior is uncommon, since in the nucleologenesis of eukaryotes, the nucleolus fragments at the end of the prophase and is reorganized only at the end of the anaphase/beginning of the telophase.14 This phenomenon has also been observed in other hemiptera, such as, for example, aquatic species of Heteroptera.15,16

So far, 59 species of triatomines, distributed in 10 genera—Cavernicola, Dipetalogaster, Eratyrus, Meccus, Mepraia, Nesotriatoma, Psammolestes,17 Rhodnius,13,18,19 Panstrongylus,11 and Triatoma1925—had their nucleologenesis described and presented this phenomenon during meiosis, corroborating the nucleolar persistence as a synapomorphy of the subfamily Triatominae.17

All studies involving the nucleolar persistence phenomenon in triatomines are mainly focused on the nucleolar behavior during meiosis, being performed by the cytogenetic technique of silver ion impregnation, because silver has affinity for the nucleolar proteins C23 (nucleolin) and B23 (numatrine).26 Thus, as the knowledge of this phenomenon during meiosis is limited only to the presence/absence of the nucleolus, this study aimed to evaluate for the first time if the persistent nucleolar material is in transcriptional activity.

MATERIAL AND METHODS

As all triatomine species studied so far showed nucleolar persistence17; 10 adult males of the species Rhodnius montenegrensis and Panstrongylus megistus were used as biological models for the study. The specimens were provided by the Triatominae Insectarium within the Department of Biological Sciences in the College of Pharmaceutical Sciences at Sao Paulo State University’s Araraquara campus (FCFAR/UNESP), São Paulo, Brazil. After dissection of the testicles, as well as separation and fixation of the seminiferous tubules, slides with the biological material were prepared by cellular squashing technique and stained with the fluorochrome acridine orange,27 which allows the distinction between DNA in green/yellow and RNA in red. The images were obtained by laser confocal microscopy (ZEISS LSM 710, 2010, ZEISS, Oberkochen, Germany), increasing by ×63.

RESULTS AND DISCUSSION

Through the analysis of the meiotic metaphases, it was possible to characterize the presence of RNA in the persistent nucleolar material (Figures 1A and B—arrows), making it possible to emphasize that the nucleolus that persists is in transcriptional activity because until the present work, it was uncertain whether this nuclear structure was transcriptionally active during meiosis of the triatomines.13,17

Figure 1.
Figure 1.

Meiotic metaphases of the species Rhodnius montenegrensis (A) and Panstrongylus megistus (B). Note the presence of RNA in nucleolar material (arrows) in red and DNA in chromosomes in yellow. Bar: 10 μm.

Citation: The American Journal of Tropical Medicine and Hygiene 101, 3; 10.4269/ajtmh.19-0226

The fluorochrome acridine orange had already been used previously in studies involving triatomines as, for example, in the real time analysis of salivation of the specie Rhodnius prolixus during its feeding process28 and in the study of post-meiotic reactivation of the nucleolus during spermiogenesis.29 However, although Morielle-Souza and Azeredo-Oliveira29 support this hypothesis, Alevi et al.30 and Borguetti et al.31 corroborated the absence of post-meiotic transcriptional activity through the study of ribosomal DNA (rDNA) and the nucleolar organizing region, which showed to be heterochromatized and lacking immunofluorescence marking for fibrillarin, thus suggesting nucleolar inactivation by epigenetic factors.

Schmid et al.32 postulate that the post-meiotic reactivation of rRNA genes is an evolutionary ancestral pattern in male gametogenesis of sexually reproducing organisms because it has been detected from primitive cephalochordates (amphioxo Branchiostoma lanceolatum) and has been maintained in vertebrates. However, it seems that the same is not true for some invertebrates, such as triatomines. Since the post-meiotic inactivation in triatomines has already been observed,30,31 it is suggested that the transcriptional activity of the persistent nucleolar material is essential for the formation of the organelle chromatoid body (CB).31

The CB is a cytoplasmic structure originated by the nucleolar material fragmentation during the initial stages of spermatogenesis.33 This organelle is potentially involved in important functions of the spermiogenesis process, such as the acrosome formation, intercellular transport, and spermatozoa tail formation34 because it acts as a form of storage of information translated in spermatogenesis.35 Therefore, the presence of CB supports the entire process of differentiation during spermiogenesis, once the transcriptional activity has been repressed during this phase.30,31,3638

Thus, this study demonstrates, for the first time, that the persistent nucleolar material during triatomine meiosis is in transcriptional activity and corroborates the relationship between the nucleolar persistence phenomenon and the CB formation, contributing in this way to the knowledge of the reproductive aspects of the vectors of Chagas disease.

Acknowledgments:

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Process number 2015/14762-5) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

REFERENCES

  • 1.

    Lent H, Wygodzinsky P, 1979. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’s disease. Bull Am Mus Nat Hist 163: 123520.

    • Search Google Scholar
    • Export Citation
  • 2.

    Oliveira J, Alevi KCC, 2017. Taxonomic status of Panstrongylus herreri Wygodzinsky, 1948 and the number of Chagas disease vectors. Rev Soc Bras Med Trop 50, 434435.

    • Search Google Scholar
    • Export Citation
  • 3.

    Dorn PL, Justi SA, Dale C, Stevens L, Galvão C, Lima-Cordón R, Monrot C, 2018. Description of Triatoma mopan sp. n. from a cave in Belize (Hemiptera, Reduviidae, Triatominae). ZooKeys 775: 6995.

    • Search Google Scholar
    • Export Citation
  • 4.

    Oliveira J, Ayala JM, Justi SA, Rosa JA, Galvão C, 2018. Description of a new species of Nesotriatoma Usinger, 1944 from Cuba and revalidation of synonymy between Nesotriatoma bruneri (Usinger, 1944) and N. flavida (Neiva, 1911) (Hemiptera, Reduviidae, Triatominae). J Vector Ecol 43: 148157.

    • Search Google Scholar
    • Export Citation
  • 5.

    Poinar G, 2019. A primitive triatomine bug, Paleotriatoma metaxytaxa gen. et sp. nov. (Hemiptera: Reduviidae: Triatominae), in mid-Cretaceous amber from northern Myanmar. Cretaceous Res 93: 9097.

    • Search Google Scholar
    • Export Citation
  • 6.

    Lima-Cordón RA, Monroy MC, Stevens L, Rodas A, Rodas GA, Dorn PL, Justi SA, 2019. Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae). ZooKeys 820: 5170.

    • Search Google Scholar
    • Export Citation
  • 7.

    Noireau F, Diosque P, Jansen AM, 2009. Trypanosoma cruzi: adaptation to its vectors and its hosts. Vet Res 40: 26.

  • 8.

    World Health Organization, 2019. Weekly Epidemiological Record. Chagas disease (American trypanosomiasis). Available at: http://www.who.int/chagas/en/. Accessed January 25, 2019.

    • Search Google Scholar
    • Export Citation
  • 9.

    World Health Organization, 2018. Weekly Epidemiological Record. Chagas disease (American trypanosomiasis). Available at: http://www.who.int/chagas/en/. Accessed August 08, 2018.

    • Search Google Scholar
    • Export Citation
  • 10.

    Ueshima N, 1966. Cytotaxonomy of the triatominae (Reduviidae: Hemiptera). Chromosoma 18: 97122.

  • 11.

    Tartarotti E, Azeredo-Oliveira MTV, 1999. Patterns of nucleolar activity during spermatogenesis of two triatomines, Panstrongylus megistus and P. Herreri. Caryol 52: 177184.

    • Search Google Scholar
    • Export Citation
  • 12.

    Johnson L, Blanchard TL, Varner DD, Scrutchfield WL, 1997. Factors affecting spermatogenesis in the stallion. Theriogenology 48: 11991216.

  • 13.

    Alevi KCC, Castro NFC, Lima ACC, Ravazi A, Morielle‐Souza A, Oliveira J, Rosa JA, Azeredo-Oliveira MTV, 2014. Nucleolar persistence during spermatogenesis of the genus Rhodnius (Hemiptera, Triatominae). Cell Biol Int 38: 977980.

    • Search Google Scholar
    • Export Citation
  • 14.

    Gonzáez-García JM, Rufas JS, Antonio C, Suja JA, 1995. Nucleolar cycle and localization of NORs in early embryos of Parascaris univalens. Chromosoma 104: 287297.

    • Search Google Scholar
    • Export Citation
  • 15.

    Castanhole MMU, Pereira LLV, Bicudo HEMC, Costa LA, Itoyama MM, 2008. Heteropicnotic chromatin and nucleolar activity in meiosis and spermiogenesis of Limnogonus aduncus (Heteroptera, Gerridae): a stained nucleolar organizing region that can serve as a model for studying chromosome behavior. Genet Mol Res 7: 13981407.

    • Search Google Scholar
    • Export Citation
  • 16.

    Pereira LLV, Alevi KCC, Moreira FFF, Barbosa JF, Silistino-Souza ER, Junior FS, Souza-Firmino TS, Banho CA, Itoyama MM, 2015. Study of nucleolar behavior during spermatogenesis in Martarega brasiliensis (Heteroptera, Notonectidae). Genet Mol Res 14: 89888994.

    • Search Google Scholar
    • Export Citation
  • 17.

    Madeira FF, Borsatto KC, Lima ACC, Ravazi A, de Oliveira J, da Rosa JA, de Azeredo-Oliveira MT, Alevi KC, 2016. Nucleolar persistence: peculiar characteristic of spermatogenesis of the vectors of Chagas disease (Hemiptera, triatominae). Am J Trop Med Hyg 95, 11181120.

    • Search Google Scholar
    • Export Citation
  • 18.

    Morielle A, Azeredo-Oliveira MTV, 2004. Description of the nucleolar activity and karyotype in germinative cell lines of Rhodnius domesticus (Triatominae, Heteroptera). Caryol 57: 3137.

    • Search Google Scholar
    • Export Citation
  • 19.

    Morielle A, Azeredo-Oliveira MTV, 2007. Differential characterization of holocentric chromosomes in triatomines (Heteroptera, Triatominae) using different staining techniques and fluorescent in situ hybridization. Genet Mol Res 6: 713720.

    • Search Google Scholar
    • Export Citation
  • 20.

    Severi-Aguiar GDC, Azeredo-Oliveira MTV, 2005. Cytogenetic study on three species of the genus Triatoma (Heteroptera: Reduviidae) with emphasis on nucleolar organizer regions. Caryol 58: 293299.

    • Search Google Scholar
    • Export Citation
  • 21.

    Severi-Aguiar GDC, Lourenço LB, Bicudo HEMC, Azeredo-Oliveira MTV, 2006. Meiosis aspects and nucleolar activity in Triatoma vitticeps (Triatominae, Heteroptera). Genetica 126: 141151.

    • Search Google Scholar
    • Export Citation
  • 22.

    Bardella VB, Azeredo-Oliveira MTV, Tartarotti E, 2008. Cytogenetic analysis in the spermatogenesis of Triatoma melanosoma (Reduviidae; Heteroptera). Genet Mol Res 7: 326335.

    • Search Google Scholar
    • Export Citation
  • 23.

    Costa LC, Azeredo-Oliveira MTV, Tartarotti E, 2008. Spermatogenesis and nucleolar activity in Triatoma klugi (Triatomine, Heteroptera). Genet Mol Biol 31, 438444.

    • Search Google Scholar
    • Export Citation
  • 24.

    Alevi KCC, Mendonça PP, Pereira NP, Rosa JA, Azeredo-Oliveira MTV, 2013. Análise das possíveis Regiões Organizadoras Nucleolares e da atividade nucleolar em Triatoma melanocephala e T. lenti, importantes vetores da doença de Chagas. Rev Ciênc Farmac Básica Apl 34: 417421.

    • Search Google Scholar
    • Export Citation
  • 25.

    Pereira NP, Alevi KCC, Mendonça PP, Azeredo-Oliveira MTV, 2015. Spermatogenesis and nucleolar behavior in Triatoma vandae and Triatoma williami (Hemiptera, Triatominae). Genet Mol Res 4: 1214512151.

    • Search Google Scholar
    • Export Citation
  • 26.

    Howell WM, Black DA, 1980. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36, 10141015.

    • Search Google Scholar
    • Export Citation
  • 27.

    Vidal BC, 1987. Métodos em Biologia Celular. Vidal BC, Mello MLS, eds. Biologia Celular. São Paulo, Brazil: Editora Atheneu, 534.

  • 28.

    Soares AC, Carvalho-Tavares J, Gontijo NF, Santos VC, Teixeira MM, Pereira MH, 2006. Salivation pattern of Rhodnius prolixus (Reduviidae; Triatominae) in mouse skin. J Insect Physiol 52: 468472.

    • Search Google Scholar
    • Export Citation
  • 29.

    Morielle-Souza A, Azeredo-Oliveira MTV, 2008. Study of the nucleolar cycle and ribosomal RNA distribution during meiosis in triatomines (Triatominae, Heteroptera). Micron 39: 10201026.

    • Search Google Scholar
    • Export Citation
  • 30.

    Alevi KCC, Mendonça PP, Pereira NP, Rosa JA, Azeredo-Oliveira MTV, 2014. Is there post-meiotic transcriptional activity during hemipteran spermiogenesis?. Invertebr Reprod Dev 58: 193198.

    • Search Google Scholar
    • Export Citation
  • 31.

    Borgueti AO, Alevi KCC, Silistino-Souza R, Rosa JA, Azeredo-Oliveira MTV, 2015. Immunofluorescence and ultrastructural analysis of the chromatoid body during spermatogenesis of Triatoma platensis and T. rubrovaria (Hemiptera, Triatominae). Micron 74: 4446.

    • Search Google Scholar
    • Export Citation
  • 32.

    Schmid M, Löser C, Schmidtke J, Engel W, 1982. Evolutionary conservation of a common pattern of activity of nucleolus organizer during spermatogenesis in vertebrates. Chromosoma 86: 149178.

    • Search Google Scholar
    • Export Citation
  • 33.

    Paniagua R, Nistal M, Amat P, Rodriguez MC, 1986. Ultrastructural observations on nucleoli and related structures during human spermatogenesis. Anat Embryol 174: 301306.

    • Search Google Scholar
    • Export Citation
  • 34.

    Peruquetti RL, Assis IM, Taboga SR, Azeredo-Oliveira MTV, 2008. Meiotic nucleolar cycle and chromatoid body formation during the rat (Rattus novergicus) and mouse (Mus musculus) spermiogenesis. Micron 39: 419425.

    • Search Google Scholar
    • Export Citation
  • 35.

    Kotaja N, Sassone-Corsi P, 2007. The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol 8: 8590.

  • 36.

    Braun RE, 1998. Post-transcriptional control of gene expression during spermatogenesis. Semin Cell Dev Biol 9: 483489.

  • 37.

    Kotaja N, Bhattacharyya SN, Jaskiewicz L, Kimmins S, Parvinen M, Filipowicz W, Sassone-Corsi P, 2006. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci USA 103: 26472652.

    • Search Google Scholar
    • Export Citation
  • 38.

    Meikar O et al. 2014. An atlas of chromatoid body components. RNA 20: 483495.

Author Notes

Address correspondence to Fernanda Fernandez Madeira, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo 2265, 15054-000, São José do Rio Preto Sao Paulo, Brazil. E-mail: fernanda.bio56@hotmail.com

Authors’ addresses: Fernanda Fernandez Madeira, Nayara Fernanda da Costa Castro, Patrícia Simone Leite Vilamaior, and Maria Tercília Vilela de Azeredo-Oliveira, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto, Brazil, E-mails: fernanda.bio56@hotmail.com, nayaracastro2011@gmail.com, patvila@ibilce.unesp.br, and mariatercilia2009@gmail.com. Kaio Cesar Chaboli Alevi and João Aristeu da Rosa, Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, Brazil, E-mails: kaiochaboli@hotmail.com and joaoaristeu@gmail.com.

Save