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Automatic Classification of Hepatic
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Background—Hepatic cystic echinococcosis is the main form of hepatic echino-
coccosis, which is a life-threatening liver disease caused by parasites that requires
a precise diagnosis and proper treatment.

Objective—This study focuses on the automatic classification system of five dif-
ferent subtypes of hepatic cystic echinococcosis based on ultrasound images and
deep learning algorithms.

Methods—Three popular deep convolutional neural networks (VGG19,
Inception-v3, and ResNet18) with and without pretrained weights were selected
to test their performance on the classification task, and the experiments were
followed by a 5-fold cross-validation process.

Results—A total of 1820 abdominal ultrasound images covering five subtypes of
hepatic cystic echinococcosis from 967 patients were used in the study. The clas-
sification accuracy for the models with pretrained weights (fine-tuning) ranged
from 88.2 to 90.6%. The best accuracy of 90.6% was obtained by VGG19. For
comparison, the models without pretrained weights (from scratch) achieved a
lower accuracy, ranging from 69.4 to 75.1%.

Conclusion—Deep convolutional neural networks with pretrained weights are
capable of recognizing different subtypes of hepatic cystic echinococcosis from
ultrasound images, which are expected to be applied in the computer-aided
diagnosis systems in future work.

Key Words—automatic classification; deep learning; hepatic cystic
echinococcosis; pretrained weights; scratch; ultrasound images

Human cystic echinococcosis, or hydatid cyst disease, is a
zoonosis caused by the larval cestode Echincoccus
granulosus. Hippocrates recognized hydatid disease over

2000 years ago, and the disease remains endemic today in sheep-
raising areas of the world, including Africa, the Mediterranean
region of Europe, the Middle East, Asia, South America, Australia,
and New Zealand. Dogs are the definitive hosts for Echincoccus
granulosus and sheep the major intermediate host (yaks, goats, and
camels are other relevant intermediate hosts); man is only
incidentally infected. The liver is the most frequent site for the
cystic lesions seen in hydatid disease, followed by the lung, brain,
and other viscera.1 The two most important forms of human
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echinococcosis are cystic echinococcosis (CE) and
alveolar echinococcosis (AE) caused by infection at
the metacestode stages of echinococcus granulosus
and echinococcus multilocularis, respectively.2 In
China, both CE and AE are highly endemic over
large areas of the northwestern provinces and
autonomous regions.3 Human CE cases are respon-
sible nationally for more than 98% of infections in
China, with AE disease being the cause of the
remainder.4 Hepatic CE (HCE) may result in a wide
spectrum of clinical manifestations ranging from
asymptomatic infection to severe, even fatal, disease.5

In 2001, the World Health Organization (WHO)
Working Group of Experts on Hydatidosis proposed
an international classification of hepatic cysts based
on ultrasound morphology correlated to the activity
of the disease,6,7 which grouped hepatic hydatid cysts
into five major cyst types, that is, single cystic type
(SC or CE1), polycystic type (PC or CE2), internal
capsule collapse type (ICC or CE3), solid mass type
(SM or CE4), and calcified type (CA or CE5). A
progressive natural history of cyst development from
CE1 to CE5 is also considered.8 CE1 and CE2 are
classified as active cysts, and CE4 and CE5 are
inactive cysts. CE3 cysts are classified as transitional.
Cysts of different stages show very different responses
to various management options.9–12 Four therapeutic
approaches are available for HCE: surgery, percuta-
neous techniques, drug treatment (albendazole) of
active and transitional cysts, and the so-called watch
and wait approach for inactive and selected cases of
transitional CE3 cysts. Puncture, aspiration, injection,
and reaspiration with a scolicidal agent such as 95%
ethanol is the most widely used percutaneous
technique for echinococcal cysts.13 An accurate
diagnosis is a prerequisite for optimal therapy.
However, the ultrasound appearance of the cyst may
change over time, either spontaneously or in response
to treatment, leading to the difficulty of the
diagnosis.12 Currently, the gold standard for assign-
ment into the five ultrasound subcategories is
microscopic examination by analyzing the appearance
of the cyst’s contents and wall.14 For patients with the
CE1 or CE2 subtype that need surgery, the gold-
standard test can be implemented because the cysts
can be removed from the patients for the test.
However, for other patients who only need drug
treatment without surgery (ie, CE3) or patients who

just need the watch-and-wait strategy (ie, CE4 and
CE5), the gold-standard test can be hardly imple-
mented, and ultrasonic examination is necessary. In
clinical practice, the diagnosis of HCE is primarily
based on ultrasound imaging with manual visual
inspection,15 which needs a high degree of skill and
concentration and is prone to operator bias. The
subjectivity of diagnostic criteria to each sonographer
may also result in a poor interobserver agreement. An
alternative approach would be the use of the
computer-aided diagnosis (CAD) system, which has
been applied in various diseases in the past few
decades and achieved outstanding performance in
most cases.16-20 Recently, deep learning with con-
volutional neural networks (CNNs) has been gaining
attention with respect to pattern recognition of
images and as an artificial intelligence strategy used
in CAD systems as it has distinct advantages over
traditional machine learning methods in providing an
end-to-end feature extraction and efficient classifica-
tion framework to free users from the troublesome
handcrafted feature extraction.21–24 Over the last
decade, growing national demand for accurate
diagnosis of HCE at the hospitals in the undeveloped
regions in China has propelled us to find efficient
methods to help doctors improve their diagnostic
performance. We hypothesized that the use of CNNs
would recognize the sonographic appearance of
different subtypes of HCE. Therefore, the aim of
the present study was to assess the performance of the
CNNs on classifying the 5 different subtypes of HCE
from their sonographic images and provide scientific
evidence for the future HCE CAD system. To the
best of our knowledge, this is the first work on
automatic classification of HCE into five different
subtypes by using deep learning and sonographic
images.

Materials and Methods

Subject and Data
This study was approved by the Institutional Review
Board of The First Affiliated Hospital of Xinjiang
Medical University in China, and informed consent
was obtained from the research subjects. The data
were retrospectively obtained from The First Affili-
ated Hospital of Xinjiang Medical University between
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the years 2008 and 2020. A total of 1820 abdominal
ultrasound images covering the five different subtypes
of HCE from 967 patients were involved in this
study, including 358 images of 174 SC patients,
383 images of 194 PC patients, 350 images of
156 ICC patients, 351 images of 213 CA patients,
and 378 images of 230 SM patients, which were
shown in Table 1. To protect the patient’s privacy,
the personal information on the image has been
removed, and Figure 1 shows samples of each subtype

Table 1. The Ultrasound Images and Patients’ Number of Five
Subtypes of Hepatic Cystic Echinococcosis (HCE) Involved in the
Study

Subtypes of HCE
Number of

Ultrasound Images
Number of
Patients

Single cystic (SC) 358 174
Polycystic (PC) 383 194
Internal capsule
collapse (ICC)

350 156

Calcified (CA) 351 213
Solid mass (SM) 378 230

Figure 1. Ultrasound image samples of each subtype of hepatic cystic echinococcosis: A, single cystic type, B, polycystic type, C, calcified
type, D, internal capsule collapse type, and E, solid mass type.

Figure 2. Removal and reparation of artificial markers in a hepatic cystic echinococcosis ultrasound image. A, Image with markers, B,
repaired image
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of HCE. All the images were clinically confirmed by
at least two experienced sonographers.

Image Preprocessing
Before using the images to train and test the CNNs,
image preprocessing is needed, including artificial
marker repair and region of interest (ROI) extraction.
A portion of these ultrasound images was artificially
marked by sonographers to record the location and
size of the cystic capsule, etc. As shown in Figure 2A,
artificial markers occlude the texture region and break
the integrity of an image, adversely affecting image
analysis. Hence, we used Spot Healing Brush in
Adobe Photoshop (version 19.1.1) to remove the
markers and repair the image. In particular, we used a
rounded Spot Healing Brush with a diameter of
15 pixels that was slightly larger than the width of the
graticules and a hardness of 0% to avoid harsh and
unnatural edges; other settings for the brush were
spacing of 25%, angle of 0%, and roundness of 100%.
Then, we use this Spot Healing Brush to remove the
spots (markers) by brushing along the graticules. As
shown in Figure 2B, the makers are entirely repaired
with good image quality. This ensures that the train-
ing images have no artificially labeled or irrelevant
information that may affect the classification results,
enhancing the models’ reliability.

The original images showed a large echo region,
including the liver and other peripheral organ parts. To
eliminate the interference of irrelevant areas and
reduce the computational burden of the model, we
manually cropped the lesion region as the ROI and set
the size to a uniform 224 × 224 in the JPG format.

Methods
The experiments were implemented in MATLAB
2020b on a computer with specifications of 32GB

RAM and Intel® Core™ i7-8700 @ 3.2GHz CPU.
Figure 2 shows the flow of this study.

Due to their outstanding performance in previous
studies,25–27 we choose the following network archi-
tectures as the classification models: VGG19,28

Inception-v3,29 and ResNet18.30 For each architec-
ture, the training processes were performed as

Figure 3. The flow of the study, starting with original ultrasound images followed by preprocessing to obtained qualified images for deep
learning

Table 2. Confusion Matrices by Fine-Tuning the Networks

(A) VGG19

Predicted

Actual CA ICC PC SC SM

CA 335 0 1 3 12
ICC 0 287 37 17 9
PC 2 8 360 8 5
SC 3 5 14 336 0
SM 33 5 9 1 330

(B) Inception-v3

Predicted

Actual CA ICC PC SC SM

CA 334 2 0 2 13
ICC 4 292 17 23 14
PC 5 20 329 17 12
SC 6 9 6 337 0
SM 20 7 2 2 347

(C) ResNet18

Predicted

Actual CA ICC PC SC SM

CA 328 0 4 5 14
ICC 5 253 46 32 14
PC 3 7 343 24 6
SC 2 0 9 347 0
SM 26 3 9 6 334

Wu et al—Computer-Aided Diagnosis of Hepatic Cystic Echinococcosis

4 J Ultrasound Med 2021; 9999:1–12



follows: (1) training the networks with random initial
weights (“from scratch”) by the preprocessed images
and (2) training with publicly available pretrained
networks (“fine-tuning”) by the preprocessed images.
The overall flow of analyses is summarized in
Figure 3. The hyperparameters of the networks were
heuristically adjusted so as to facilitate the convergence
of the loss function during the training. Cross-entropy
is the loss function used as it gives the measure of the
closeness of the predicted and actual distribution. Sto-
chastic gradient descent with momentum was the cho-
sen optimizer, considering its good learning rate and
the parameter-specific adaptive nature of the learning
rates. The initial learning rate was set to 0.0003 as a
high value might prevent the loss function from con-
verging and cause overshoots, and a very small value
increases the burden of the computation and training

time. Considering the speed of training (a large batch
size means faster training) and the computational capac-
ity of the computer, the mini-batch size was set to 30.
Besides, a very large batch size adversely impacts the
models’ performance. A higher learning rate is desirable
at the modified fully connected layer so as to learn spe-
cific features of the ultrasound images, so the learning
factor was set to 10. An epoch is equivalent to a forward
pass and a backward pass of all the training examples. In
our experiment, the number of epochs was limited to
10 considering the occurrence of overfitting. Owing to
the limited data size in our study, the following methods
of data augmentation were adopted during the training
process of each model to reduce overfitting: horizontal
flip, vertical flip, translation (�5 pixels along X-axis or Y-
axis), zoom (from 0.9 to 1.1), and rotation (�5�).

To evaluate the models’ performance, classification
accuracy, recall, specificity, precision, and F1-score
were calculated along with a confusion matrix. The fol-
lowing Equations (1)–(5) defined the metrics.

Accuracy =
TP +TN

TP+ FP +TN+FN
ð1Þ

Recall =
TP

TP + FN
ð2Þ

Specificity =
TN

TN+FP
ð3Þ

Precision =
TP

TP+ FP
ð4Þ

F1−score =
2*precision*recall
precision + recall

ð5Þ

where TP, FP, TN, and FN represent the numbers of
true positive, false positives, true negatives, and false neg-
atives, respectively. We performed the experiments five
times, and each experiment followed a 5-fold cross-
validation process. The average results after 5 trials were
presented in mean � standard deviation format.

Results

A confusion matrix is a tabular summary of the num-
ber of correct and incorrect predictions made by a
classifier. Table 2 shows the confusion matrices by

Table 3. Confusion Matrices by Training From Scratch (Networks
with Random Initial Weights)

(A) VGG19

Predicted

Actual CA ICC PC SC SM

CA 291 1 7 13 39
ICC 4 230 48 46 22
PC 5 72 234 40 32
SC 17 22 10 306 3
SM 37 14 19 2 306

(B) Inception-v3

Predicted

Actual CA ICC PC SC SM

CA 311 2 4 1 33
ICC 8 183 104 35 20
PC 5 105 209 26 38
SC 18 17 33 284 6
SM 59 16 26 1 276

(C) ResNet18

Predicted

Actual CA ICC PC SC SM

CA 256 1 3 11 80
ICC 3 234 42 41 30
PC 5 87 215 28 48
SC 7 19 5 318 9
SM 24 8 9 2 335
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fine-tuning the networks, and Table 3 shows the
confusion matrices by training from scratch (net-
works with random initial weights), which were
obtained during experimentation. Based on the con-
fusion matrices, different metrics can be derived to

indicate the models’ performance, specific to each
HCE subtype class as shown in Table 4. The overall
classification accuracy from high to low was
90.6 � 1.3% for fine-tuning VGG19, 90.1 � 1.6%
for fine-tuning Inception-v3, 88.2 � 1.5% for

Table 4. Hepatic Cystic Echinococcosis (HEC) Class-Specific Evaluation of Fine-Tuning the Networks

(A) VGG19

HCE Subtypes Precision (%) Recall (%) Specificity (%) F1-Score (%) AUC (%)

Calcified type (CA) 89.9 � 3.0 95.4 � 2.1 97.2 � 1.0 92.6 � 1.3 99.7 � 0.2
Internal capsule collapse type (ICC) 94.2 � 2.3 82.0 � 4.6 98.7 � 0.6 87.6 � 2.4 98.5 � 0.7
Polycystic type (PC) 85.8 � 5.0 94.0 � 2.0 95.5 � 1.8 89.6 � 2.8 98.4 � 0.6
Single cystic type (SC) 92.5 � 4.9 94.0 � 3.8 97.8 � 1.5 93.0 � 1.4 99.4 � 0.3
Solid mass type (SM) 92.8 � 2.6 87.3 � 6.4 98.1 � 0.8 89.8 � 3.5 99.0 � 0.4

(B) Inception-v3

HCE Subtypes Precision (%) Recall (%) Specificity (%) F1-Score (%) AUC (%)

CA 91.0 � 5.4 95.2 � 3.2 97.4 � 1.7 92.8 � 2.0 99.5 � 0.3
ICC 89.9 � 7.6 83.4 � 10.3 97.3 � 2.4 85.7 � 4.5 98.7 � 0.2
PC 93.0 � 2.3 85.9 � 2.7 98.1 � 0.7 89.3 � 2.2 98.6 � 0.5
SC 89.0 � 5.7 94.2 � 3.9 96.7 � 1.9 91.3 � 1.1 99.4 � 0.2
SM 90.7 � 6.7 91.8 � 4.9 97.1 � 2.4 90.9 � 2.5 98.8 � 0.5

(C) ResNet18

HCE subtypes Precision (%) Recall (%) Specificity (%) F1-Score (%) AUC (%)

CA 91.0 � 7.5 93.5 � 5.2 97.3 � 2.5 91.9 � 3.0 99.5 � 0.3
ICC 96.2 � 1.4 72.3 � 4.7 99.3 � 0.2 82.5 � 3.3 98.5 � 0.6
PC 83.9 � 5.4 89.6 � 3.6 94.9 � 2.1 86.5 � 2.0 98.4 � 0.7
SC 84.0 � 3.4 96.9 � 1.6 94.9 � 1.3 89.9 � 1.7 99.4 � 0.3
SM 91.8 � 7.1 88.4 � 6.9 97.4 � 2.4 89.6 � 2.0 98.9 � 0.4

Figure 4. The overall classification accuracy of each convolutional neural network in our experiment. (‘FT’ is short for ‘fine-tuning,’ and ‘S’
is short for ‘scratch’)
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fine-tuning ResNet18, 75.1 � 3.9% for VGG19 from
scratch, 74.6 � 1.4% for ResNet from scratch, and
69.4 � 3.3% for Inception-v3 from scratch, as shown
in Figure 4.

Figures 5 and 6 demonstrate the accuracy of
training and validation datasets by the three
CNNs with and without pretrained weights,
respectively.

Figure 5. Accuracy of the training and validation datasets by the three convolutional neural networks. Pretrained model weights were used
for training (“fine-tuning”). A, VGG19; B, Inception-v3, and C, ResNet18
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As the fine-tuning VGG19 obtained the best
accuracy in our experiments, we illustrate its receiver
operating characteristic (ROC) curve in Figure 7 to
demonstrate its classification ability, and the
corresponding values of the Area Under the Curve
(AUC) are listed in the Table 2.

Discussion

In this study, we evaluated the performance of deep
learning algorithms in the automatic classification of five
different subtypes of HCE from ultrasound images
based on the 5-fold cross-validation. The average

Figure 6. Accuracy of the training and validation datasets by the three convolutional neural networks. The model weights used random ini-
tial weights (“training from scratch”): A, VGG19; B, Inception-v3, and C, ResNet18
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classification accuracy ranged from 88.2 to 90.6% for the
fine-tuning networks. The best performance was
achieved by the fine-tuning VGG19 with a classification

accuracy of 90.6 � 1.3%. For comparison, similar exper-
iments were performed without the use of pretrained
weights (“training from scratch”) that showed poorer
performance (Table 3 and Figure 6), and average classi-
fication accuracy only ranged from 69.4 to 75.1%. A T-
test indicated there was a statistically significant differ-
ence between the classification accuracy for each model
training with pretrained weights and the model from
scratch training with random initial weights (P < .001).
In addition to the classification accuracy, other evalua-
tion metrics shown in Tables 4 and 5 also verified that
the performance of fine-tuning networks is superior to
those networks from scratch.

A small training dataset can be a weakness in
deep learning algorithms because it can be easily
overfitted.31 To overcome the limitations, the tech-
niques of data augmentation and transfer learning
were often used in many medical fields, such as com-
puterized tomography (CT), magnetic resonance
imaging (MRI), and ultrasound images,32-35 which
have been proven to be efficient ways for improving
the performance of deep learning models. Since the

Figure 7. Receiver operating characteristic curves of VGG19 with
pretrained weights

Table 5. Hepatic Cystic Echinococcosis (HCE) Class-Specific Evaluation of the Networks from Scratch

(A) VGG19

HCE Subtypes Precision (%) Recall (%) Specificity (%) F1-Score (%) AUC (%)

Calcified type (CA) 82.6 � 2.8 82.9 � 12.2 94.5 � 1.6 82.1 � 5.8 97.8 � 0.8
Internal capsule collapse type (ICC) 70.0 � 9.6 65.7 � 8.7 91.2 � 4.6 66.7 � 4.2 90.4 � 3.4
Polycystic type (PC) 76.1 � 8.2 61.1 � 18.8 93.2 � 4.0 65.0 � 11.8 91.8 � 1.5
Single cystic type (SC) 78.0 � 10.8 85.4 � 11.0 91.3 � 7.1 80.3 � 6.6 97.7 � 0.4
Solid mass type (SM) 76.5 � 3.2 81.0 � 9.0 91.6 � 2.3 78.3 � 3.5 96.2 � 0.6

(B) Inception-v3

HCE Subtypes Precision (%) Recall (%) Specificity (%) F1-Score (%) AUC (%)

CA 79.2 � 9.0 88.6 � 6.9 91.3 � 5.4 82.9 � 2.9 98.0 � 0.3
ICC 59.7 � 7.4 52.3 � 26.8 88.8 � 7.0 50.3 � 15.8 86.4 � 3.5
PC 57.8 � 6.7 54.6 � 14.0 86.2 � 7.4 54.4 � 3.9 86.7 � 0.9
SC 84.1 � 9.9 79.3 � 9.1 94.0 � 4.8 80.6 � 4.1 96.5 � 0.9
SM 76.1 � 7.9 73.0 � 17.4 91.1 � 5.2 72.5 � 8.9 95.4 � 1.0

(C) ResNet18

HCE Subtypes Precision (%) Recall (%) Specificity (%) F1-Score (%) AUC (%)

CA 88.5 � 7.5 72.9 � 12.0 96.6 � 2.9 78.8 � 5.6 98.1 � 0.3
ICC 68.2 � 7.4 66.9 � 8.6 90.8 � 3.3 66.8 � 3.4 91.3 � 1.7
PC 78.7 � 5.9 56.1 � 8.6 95.1 � 1.8 65.1 � 6.8 92.5 � 1.2
SC 80.4 � 6.2 88.9 � 7.2 92.7 � 3.1 83. 9 � 2.0 97.6 � 0.5
SM 68.4 � 8.5 88.6 � 6.6 86.2 � 5.9 76.5 � 3.9 96.4 � 0.7
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available data in our experiments is limited, both of
these two methods were applied in our experiments.
With the help of data augmentation, the size of the

training dataset can be artificially expanded from the
exiting images by image flip, rotation, translation, etc.
to reduce the risk of overfitting caused by the lack of

Table 6. The Fine-Tuning Models’ Predictions

Sample Images Actual ResNet18 Inception-v3 VGG19

SC PC SC SC

PC PC PC ICC

ICC SC ICC ICC

SM ICC SM SM

CA SM CA SM
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available training data.36 We applied data augmenta-
tion for the training data with random parameter
values within specified ranges. As for transfer learning,
also known as knowledge transfer, it is a machine
learning method that reuses a pretrained model on a
new problem, which exploits the knowledge gained
from a previous task to improve generalization about
another.37 We used the pretrained CNNs with pub-
licly available weights that were optimized by 1.2 mil-
lion general-purpose images in 1000 classes on
ImageNet.38 Although ImageNet did not include
medical images, the pretrained CNNs were capable of
extracting valuable characteristics of many other fields
of images for recognition. As for our experiments,
confusion matrices in Table 2 and the training pro-
cess shown in Figure 5 both indicate that the pre-
trained CNNs correctly classified most of the images.
However, there were still some misclassified image
samples in the results. It is interesting to note that,
for the same testing images, the classification results
of the three pretrained models are not completely
consistent due to their different architecture and fea-
tures extracted. As shown in Table 6, some of the
images misclassified by a pretrained model were cor-
rectly classified by the others. This finding inspires us
to use an ensemble of CNNs that comprehensively
considers the results of three CNNs model to further
enhance the classification accuracy.

As this is a pilot study for automatic classification
of HCE by deep CNNs, some limitations exist. One is
that we manually cropped ROIs from the original ultra-
sound images to form the training and testing dataset,
which may be subjective and could prevent the system
from becoming fully automatic. The automatic
methods of image segmentation, ie, U-Net,39

SegNet,40 etc. are expected to be applied and assessed
in future studies. Another shortage is that the general-
izability of the models was unknown as all image data
were collected from a hospital. Future prospective mul-
ticenter studies in a larger cohort of patients are
needed to validate the models’ generalizability.

Conclusion

This study demonstrated that CNNs are capable of
recognizing different subtypes of HCE from ultra-
sound images. The fine-tuning CNNs with pretrained

weights outperform the CNNs from scratch. The best
performance was achieved by the fine-tuning VGG19
with pretrained weights, which achieved an overall
accuracy of 90.6%. Our work suggested that CNNs
can be important methods in the HCE CAD system
and could help clinicians improve their diagnostic
performance.
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