In order to provide our readers with timely access to new content, papers accepted by the American Journal of Tropical Medicine and Hygiene are posted online ahead of print publication. Papers that have been accepted for publication are peer-reviewed and copy edited but do not incorporate all corrections or constitute the final versions that will appear in the Journal. Final, corrected papers will be published online concurrent with the release of the print issue.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Images in Clinical Tropical Medicine

Rapidly Progressing Fungal Keratitis with Endophthalmitis Post-Severe Acute Respiratory Syndrome Coronavirus 2 Infection

Somasheila I. Murthy,1* Brijesh Takkar,2,3 and Dilip Kumar Mishra4

1Cornea Service, The Cornea Institute, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India; 2Smt Kannuri Santhamma Center for Vitreoretinal Diseases, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India; 3Indian Health Outcomes, Public Health and Economics Research, Hyderabad, India; 4Ophthalmic Pathology Service, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India

A 56-year-old male farmer presented with a 1-week history of painful visual loss after trauma with a rice husk to his right eye. He had no history of diabetes or immune dysfunction. He was hospitalized a month previously for COVID-19 and...
had received five injections of intravenous methyl prednisolone (500 mg). At presentation, his visual acuity was perception of light. The cornea showed a full-thickness infection (Figure 1A). Ultrasonography showed a clear vitreous cavity (Figure 1B). Microbiology from corneal scrapings revealed fungal filaments (Figure 1C). Natamycin 5% eye drops hourly and oral ketoconazole 200 mg twice daily were started. However, the infection progressed rapidly (Figure 1D and E), and an urgent corneal transplant was done. Because the lens was also infected, cataract extraction was also performed (surgery 1). Despite this, the condition worsened over 2 weeks. The infection spread deeper to the posterior segment of the eye (endophthalmitis) (Figure 1 F and G), necessitating vitrectomy and injections of amphotericin B (50 µg) and voriconazole (100 µg) (surgery 2). Corneal tissue grew Fusarium solani (Figure 1H). Histopathology showed deep invasion (Figure 1I–L). Over the next 2 weeks, there appeared to be improvement; hence, topical prednisolone acetate 1% was started (4 weeks after transplant or 2 weeks after vitrectomy) (Figure 2A–D). At 5 weeks post-transplant, the patient seemed better; but, suddenly at 6 weeks, he presented with recurrence of infection in the graft (Figure 2E–H). As a last effort, repeat transplantation with intraocular wash was performed (surgery 3). One month later (Figure 2 I and J), the infection had resolved but the eye was already shrinking (phthisis). Histopathology again revealed fungal filaments (Figure 2K–N).

Fungal keratitis can worsen rapidly when associated with predisposing factors such as trauma, topical corticosteroids use, or uncontrolled diabetes mellitus.1,2 Therapy for COVID-19 infection often includes systemic glucocorticoids, among other agents, for acute respiratory involvement.3 Our patient developed infection 1 month after having COVID-19. His condition worsened despite aggressive medical and surgical

Figure 2. (A) Four weeks after the first surgery, there was improvement. Graft edema persisted, but the epithelial defect and hypopyon had both decreased. Topical steroids were started because the condition was better. (B) The corresponding ultrasound shows a clear vitreous cavity and a detached, thickened choroid. Five weeks later, there is (C) further retraction of the hypopyon and clearing of the graft, with (D) corresponding ultrasound showing decreased choroidal thickening. (E) Six weeks postoperatively, the slit-lamp photograph of the graft shows recurrence of the infection superiorly. (F) The corresponding ultrasound shows a uniform increase in vitreous echoes suggestive of vitreous hemorrhage. (G) A week later (7 weeks after surgery), the graft is completely infected. (H) The corresponding ultrasound shows exudates and vitreous hemorrhage. (I) Four weeks after the second transplant, there is dense edema of the graft and blood in the anterior chamber (hyphema), but no infection. (J) Ultrasound shows persistent vitreous hemorrhage. Histopathology of the second corneal specimen shows (K) edematous, densely infiltrated tissue with neutrophilic exudates (hematoxylin–eosin stain, ×10 magnification) and (L) Descemet fragmentation (asterisk) (hematoxylin–eosin stain, ×10 magnification). Gomori methenamine silver stain shows the presence of fungal filaments (asterisk) (M) at the posterior stroma in a background of necrosis (×10 magnification); these filaments are also noted at the level of the Descemet’s membrane (N) (asterisk) (×20 magnification). This figure appears in color at www.ajtmh.org.
management. Decreased production of CD4+ T cells and CD8+ T cells, and decreased cytokines in COVID-19 have been associated with systemic immunosuppression, predisposing to secondary opportunistic infections (especially fungal).4,5 Fusarium infection itself is a poor prognostic factor because it is known to progress to endophthalmitis, which invariably has a poor outcome.2 We postulate that the weakened host immunity and the use of glucocorticoids in COVID-19 may have been an additional risk factor for the poor outcome in our patient.

Received October 5, 2021. Accepted for publication January 28, 2022.

Acknowledgments: We thank Savitri Sharma, Network Head, Jhaveri Microbiology Centre, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India. The American Society of Tropical Medicine and Hygiene has waived the open-access fee for this article due to the ongoing COVID-19 pandemic and has assisted with publication expenses.

Financial support: This work was supported by the Hyderabad Eye Research Foundation, Hyderabad, Telangana, India and by a grant to B. T. by the DBT Wellcome Trust India Alliance Clinical Research Centre (grant no. IA/CRC/19/1/610010).

Authors’ addresses: Somasheila I. Murthy, Cornea Service, The Cornea Institute, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India, E-mail: smurthy@lvpei.org. Brijesh Takkar, Smt Kannuri Santhamma Center for Vitreoretinal Diseases, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India, and Indian Health Outcomes, Public Health and Economics Research, Hyderabad, India, E-mail: brijeshtakkar@lvpei.org. Dilip Kumar Mishra, Ophthalmic Pathology Service, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India, E-mail: dilipkumarmishra@lvpei.org.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

REFERENCES

