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Abstract. An outbreak of SARS-CoV-2 has led to a global pandemic affecting virtually every country. As of August 31,
2020, globally, there have been approximately 25,500,000 confirmed cases and 850,000 deaths; in the United States (50
states plusDistrict of Columbia), there have beenmore than 6,000,000 confirmed cases and 183,000deaths.Wepropose
a Bayesian mixture model to predict and monitor COVID-19 mortality across the United States. The model captures
skewed unimodal (prolonged recovery) ormultimodal (multiple surges) curves. The results show that across all states, the
first peakdates ofmortality variedbetweenApril 4, 2020 for Alaska andJune18, 2020 for Arkansas. Asof August 31, 2020,
31 states had a clear bimodal curve showing a strong second surge. The peak date for a second surge ranged from July 1,
2020 for Virginia to September 12, 2020 for Hawaii. The first peak for the United States occurred about April 16,
2020—dominated by New York and New Jersey—and a second peak on August 6, 2020—dominated by California,
Texas, and Florida. Reliable models for predicting the COVID-19 pandemic are essential to informing resource allocation
and intervention strategies. A Bayesian mixture model was able to more accurately predict the shape of the mortality
curves across the United States than other models, including the timing of multiple peaks. However, given the dynamic
nature of thepandemic, it is important that the results beupdated regularly to identify andbettermonitor futurewaves, and
characterize the epidemiology of the pandemic.

INTRODUCTION

An outbreak of SARS-CoV-2 has led to worldwide spread,
affecting virtually every country globally with approximately
25,500,000 confirmed cases andmore than 850,000 deaths as of
August 31, 2020 based on WHO reporting.1 In the United States
alone (50 states plus District of Columbia), there have been more
than 6,000,000 confirmed cases and 183,00 deaths as of the end
of August. The pandemic has resulted in substantial disruptions
to people’s lives. At various points, more than 3 billion people
throughout the world have been under various lockdown orders.2

The application of these orders has varied widely across countries
and within countries.3 Public health countermeasures to interrupt
and control transmission rely on predictive models and an un-
derstanding of disease dynamics.4,5 Because disease is acquired
through asymptomatic transmission in most of the cases, the ep-
idemiology of the pathogen is not fully understood. It has been
firmly established that it is readily transmitted via droplet nuclei, but
airborne transmission also likely plays a role.6,7 Understanding the
transmission dynamics of the pandemic is crucial for informing
decisions regarding resource allocation, in instituting control mea-
sures, and in assessing their effectiveness as amitigation strategy.
TheCOVID-19 pandemic has spawned the development of a

large number of predictive mathematical models.8 Two com-
monly used approaches are based on transmissionmodels9–11

and curve-fittingmodels.12 Transmissionmodels simulate how
quickly an infection can spread in a community that is immu-
nologically naive, based on a number of initial assumptions.
Althoughsuchmodelsareuseful, theyarebasedonparameters
that are hard to determine, and therefore are sensitive to initial
values and assumptions. Consequently, the results can vary
greatly (Imperial College model10 versus Oxford model11) and
substantially overestimate or underestimate the full extent of an
outbreak.13 Curve fitting models use available COVID-19 data

to determine if trends exist, and project future disease trajec-
tories by extrapolation (Institute for Health Metrics and Evalu-
ation [IHME] COVID-19 health service utilization forecasting
team12). Although such models can be useful for short-term
prediction, their long-term projections will vary depending on
the type of the curve used for extrapolation in addition to the
impact of new and unforeseen factors, including, for example,
the development of effective vaccines, virus mutations, or
changes in government interventions including stay-at-home
orders or prematurely phasing out of such orders.
We use data from the United States to inform and monitor

COVID-19mortality in 50 states and theDistrict ofColombia using
a Bayesian curve fitting model. Data on the number of confirmed
cases are confounded by changes in test availability. We used
mortality data as a more reliable measure for modeling pandemic
progress over time. Our approach uses a Bayesian modeling
framework14 for modeling and predicting daily mortality, and
subsequently deriving the cumulative mortality projections over
time.TheBayesianframeworkallowsforupdatingpriorknowledge
about the quantity of interest using the observed data and calcu-
lates posterior distribution for the quantity of interest. Bayesian
inferencesarederived from theposterior distributionsof quantities
of interest, which are used for projections and their corresponding
credible intervals. In addition, the Bayesian framework provides
computational power via the Markov chain Monte Carlo meth-
odology toprovideexact estimateof thequantity of interest, rather
than using approximate optimization algorithms.
The Bayesian model is applied to COVID-19 mortality data

in the United States, but can be used in a similar manner for
predicting other COVID-19measures, including the number of
confirmed cases, the number of COVID-19–related hospitali-
zations, and healthcare utilizations.

MATERIALS AND METHODS

Curve fitting models are useful mathematical models for
predicting the trajectory of pandemics over time.8 A com-
monly used curve for such models is a bell-shaped curve
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defined by the Gaussian function: fðtÞ=Ppexpð�½t� tpeak�2=
½2σ2�Þ, where tpeak is the time to peak, P is the magnitude
of the peak, and σ captures the width of the curve. Alterna-
tively, f(t) can be expressed as fðtÞ= ðP ffiffiffiffiffiffi

2π
p

σÞ 1ffiffiffiffiffi
2π

p
σ

expð�½t� tpeak�2=½2σ2�Þ=Mpfðt; tpeak σÞ, where M=P
ffiffiffiffiffiffi
2π
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σ

is the overall expected mortality and f(t; tpeak, σ) is the normal
density function, which governs how the overall mortality M
is distributed over time; that is, expected mortality at time t is
M*f(t; tpeak, σ). The initial IHME model12 uses a Gaussian sig-
moidal function for forecasting the cumulative mortality data
(which is equivalent toaGaussian function for thedailymortality
data). In the IHME model, the parameters of the curvature
function are estimated based on a regression model with a
normal distribution on the log-transform cumulative deaths as
outcome.12 For a curve fittingmodel to performwell, the shape
of the curve chosen is important; it must have a sound fit with
the observed data and an appropriate underlying theoretical
justification. The curve defined by a Gaussian function has a
symmetric shape around the peak, and future trends are fore-
casted by extrapolating the observed trend forcing the post-
peak component of the trajectory to be symmetric with the
pre-peak portion. These forecasts assume that factors related
to the pandemic do not change over time, thus are suitable
when the spread of the pandemic is relatively homogeneous
with no mitigating measures of behavioral changes. Although
the assumption of homogeneity over timemight be reasonable
over short timeperiods, it is unrealistic for long timeperiods and
large areas, as changes in the pandemic progression will result
in behavioral changes at the individual level, and policy and
practice changes at the local, state, and federal levels (i.e.,
social distancing and stay-at-home orders). Such changes
have the potential to alter, sometimes substantially, the natural
arc of the disease course. To account for such changes, we
propose a model where the curve for the daily mortality tra-
jectory μ(t) at day t is expressed as a mixture of multiple ho-
mogeneous sub-curves. Each sub-curve can be seen as
implicitly capturing a sub-epidemic or a specific trend in the
trajectoryduringagiven timeperiod,which relates tounderlying
factors (known or unknown) for that span of time. This is par-
ticularly relevant for the COVID-19 pandemic in the United
States, where, for example, changes in compliance with social
distancing in late May early June 2020 resulted in a surge of
cases in a large number of states.
Specifically, let the mortality at day t be comprised as

yðtÞ=+K
i = 1yiðtÞ, where yi(t) represents the number of deaths at

day t attributed to a surge or sub-epidemic indexed by i =
1,. . .,K, K ³ 1 is the number of sub-epidemics empirically
identified, and E(yi[t]) = μi(t). The trajectory μi(t) for surge i can
be modeled by a homogeneous Gaussian function μi(t) =
Mi*f(t; tpeak,i, σi), whereMi is the overall mortality, tpeak,i is the
time to peak, and σi represents the width for surge i. The
mortality curve for the whole pandemic E(y[t]) = μ(t) is then
decomposed as:

μðtÞ¼+K
i¼ 1μiðtÞ¼+K

i¼ 1Mif
�
t,tpeak,i,σi

�
:

LetM=+K
i =1Mi be the overall mortality of the pandemic, then

πi =Mi=M is the proportion of all deaths attributed to surge i,
withMi = M πi.
Therefore, we proposed the following mixture curve model

for modeling the trajectory of daily COVID-19 mortality:

μðtÞ¼M+K
i¼1πif

�
t,tpeak,i,σi

�
,

where M is the overall mortality and f(t; tpeak,i σi) represents
the part of the curve related to some underlying factor(s), πi is
the proportion of total deaths that are attributed to such fac-
tor(s) indexed by i, and K is the number of sub-curves com-
prising themixtures. The number of parameters identifying the
curve is 3K: M,π1 . . .,πK−1, (tpeak,1 σ1), . . ., (tpeak,K σK). Thef(t;
tpeak,i σi) here is the Gaussian density function, defined by the
location parameter tpeak,i, which represents the time from the
first death to apex, and the scale parameter σi, which repre-
sents the spread of the curve. We propose a Bayesian ap-
proach for estimating the curve parameters and subsequently
any other statistics of interest, with values for the parameters
being drawn from their posterior distribution condition on the
observed data. We assume the distribution for the observed
mortality data y(t) at time t to be negative binomial:

YðtÞ∼negative-binomialðN, ptÞ,
where N is the state’s population size. A negative binomial
distribution function is used for Y(t), as it is appropriate for
count data, with EðY ½t�Þ=μðtÞNpt=ð1�ptÞ. Bayesian Markov
Chain Monte Carlo methods are used to make draws from the
posterior distribution of the unknown parameters and derive
future projections. Weakly informative prior distributions were
used for all model parameters15 (see Supplemental Material).
The number of mixtures K is selected based on choosing a

parsimonious model having lower deviance information cri-
teria. The resulting shapeof the curveμ(t) canbemultimodal or
unimodal. For a multimodal curve, the proposed modeling
identifies multiple surges (i.e., Sun Belt States, California,
Florida, Texas). For unimodal curves, the proposed modeling
can accommodate skewed long-tailed distributions,16 where
the curve comprisesmultiple sub-curves, but is dominated by
onemajor surgeormultiple surgesoccurring closely spaced in
time (e.g., New York, New Jersey, Michigan).

RESULTS

In this section, we apply the proposed model to the COVID-19
mortality data in the United States (www.worldometers.info/
coronavirus/). Because of variation in the number of death records
bydayof theweek (particularly onweekends), we used aweekly 7-
daymoving average (±3 dayswindow) as amore reliablemeasure
for daily mortality. All analyses were performed in SAS 9.4 (SAS
Institute Inc., Cary, NC)17 using PROC MCMC. We ran 500,000
iterations following 10,000 burn in and 1,000 thinnings to reduce
high autocorrelation. The expected number of deaths for each day
was derived based on the corresponding posterior distribution.
Based on the data available as of August 31, 2020, for most

of the states, amixture ofK=2sub-curves showedagoodand
parsimonious fit of the data, with no substantial improvement
for K > 2. For Arizona, Louisiana, Massachusetts, Michigan,
New York, South Carolina, Tennessee, and Virginia, a mixture
ofK= 3 sub-curves improved themodel fit, with no substantial
improvement for K > 3. For the entire country, we derived the
curve for daily mortality as the sum of estimates from each
state plus the District of Columbia. Figure 1 displays the daily
mortality curves for each state and District of Colombia and
for the entire country. There is variability among curves in
the context of their shape, magnitude, and timing of the
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pandemic. Daily mortality and cumulative mortality curves
separately for each state and the entire nation are provided in
Supplemental Figure 1. Most of the states demonstrate a bi-
modal curve with two major peaks. The first peak represents
the initial dynamic of the pandemic, following the introduction
of control measures in March, and the second or third peak

captures the surge that occurred in many states after mea-
sures were phased out to varying degrees.
The estimateddate of thepeak for each state and theUnited

States is shown in Table 1. The first peak date among states
varied between April 4, 2020 for Alaska, and June 18, 2020 for
Arkansas. Thirty-one states have a clear bimodal curve, with

FIGURE 1. COVID-19 mortality curves for the United States and for each state.
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TABLE 1
Projected COVID-19 mortality as of September 30, 2020 by state

State September 30 Projected* (95%CI) Peak1 π1 (%) Peak2 π2 (%) Peak3 π3 (%)

Alabama 2,540 2,478 (2,326–2,629) May 5, 2020 25 August 1, 2020 75 – –

2,291 (2,125–2,539)
Alaska 56 47 (40–59) April 4, 2020 22 August 11, 2020 78 – –

37 (34–46)
Arizona 5,650 5,513 (5,292–5,735) May 7, 2020 17 July 19, 2020 10 July 28, 2020 73

5.902 (5,454–6,706)
Arkansas 1,369 1,215 (1,016–1,414) June 18, 2020 30 September 12, 2020 70 – –

1,040 (772–1,454)
California 15,900 15,906 (15,466–16,346) May 2, 2020 23 August 12, 2020 77 – –

17,448 (15,520–20,496)
Colorado 2,051 2,010 (1,955–2,093) May 2, 2020 77 July 24, 2020 23 – –

2,036 (1,967–2,169)
Connecticut 4,508 4,521 (4,468–4,604) April 26, 2020 75 May 29, 2020 25 – –

4,477 (4,460–5,512)
Delaware 636 620 (606–653) May 20, 2020 94 June 25, 2020 6 – –

618 (605–641)
District of Columbia 627 624 (609–654) May 1, 2020 66 June 13, 2020 34 – –

647 (637–663)
Florida 14,317 12,686 (12,367–13,006) May 6, 2020 23 August 6, 2020 77 – –

15,758 (13,107–20,248)
Georgia 7,021 6,992 (6,561–7,422) May 10, 2020 39 August 21, 2020 61 – –

7,469 (6,419–9,383)
Hawaii 136 136 (79–194) April 13, 2020 11 September 12, 2020 89 – –

61 (51–84)
Idaho 469 411 (372–459) April 19, 2020 23 August 12, 2020 77 – –

541 (408–778)
Illinois 8,916 8,719 (8,517–8,956) May 10, 2020 74 August 11, 2020 26 – –

9,044 (8,476–9,851)
Indiana 3,632 3,497 (3,367–3,628) May 2, 2020 58 July 19, 2020 42 – –

3,838 (3,616–4,183)
Iowa 1,346 1,315 (1,184–1,445) May 15, 2020 50 August 22, 2020 50 – –

1,542 (1,274–1,992)
Kansas 678 521 (472–575) April 22, 2020 34 August 7, 2020 66 – –

545 (507–620)
Kentucky 1,174 1,138 (1,042–1,235) April 28, 2020 30 August 24, 2020 70 – –

1,451 (1,102–2,089)
Louisiana 5,511 5,431 (5,223–5,639) April 12, 2020 28 May 10, 2020 27 August 9, 2020 45

5,735 (5,331–6,334)
Maine 141 137 (133–154) April 27, 2020 70 July 11, 2020 30 – –

141 (134–154)
Maryland 3,949 3,879 (3,778–4,003) May 6, 2020 69 July 11, 2020 31 – –

3,880 (3,818–3,955)
Massachusetts 9,456 9,319 (9,101–9,538) April 24, 2020 45 May 20, 2020 37 August 1, 2020 18

9,561 (9,320–9,929)
Michigan 7,083 7,013 (6,827–7,199) April 15, 2020 48 May 9, 2020 33 August 12, 2020 19

7,175 (6,961–7,531)
Minnesota 2,089 2,048 (1,908–2,188) May 18, 2020 71 August 22, 2020 29 – –

2,273 (2,103–2,500)
Mississippi 2,969 2,940 (2,751–3,130) May 12, 2020 31 August 12, 2020 69 – –

2,969 (2,686–3,430)
Missouri 2,213 1,973 (1,849–2,097) May 7, 2020 37 August 23, 2020 63 – –

2,301 (1,693–3,810)
Montana 180 126 (111–150) April 10, 2020 15 August 9, 2020 85 – –

105 (96–123)
Nebraska 478 434 (404–483) May 23, 2020 69 August 18, 2020 31 – –

473 (452–501)
Nevada 1,600 1,579 (1,447–1,711) April 28, 2020 28 August 13, 2020 72 – –

2,050 (1,586–2,840)
New Hampshire 439 449 (432–478) May 19, 2020 73 July 7, 2020 27 – –

447 (436–458)
New Jersey 16,245 16,166 (16,077–16,320) April 22, 2020 65 May 31, 2020 35 – –

16,086 (16,010–16,177)
New Mexico 877 851 (791–919) May 12, 2020 47 August 1, 2020 53 – –

924 (857–1,016)
New York 33,246 33,201 (33,058–33,441) April 8, 2020 52 April 29, 2020 36 June 7, 2020 12

33,125 (32,958–33,385)
North Carolina 3,532 3,233 (3,019–3,447) May 13, 2020 36 August 13, 2020 64 – –

3,412 (2,973–4,002)
North Dakota 246 164 (150–189) May 10, 2020 45 August 13, 2020 55 – –

208 (191–233)

(continued)
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the estimated second or third peak dates ranging between July
1, 2020 for Virginia and a projected date of September 12, 2020
for Hawaii. The first peak for the entire country occurred on
approximately April 16, 2020—dominated by New York and
New Jersey—with a second peak projected around August 6,
2020—dominated by California, Texas, and Florida. The pro-
jected overall mortality for September 30, 2020 (30 days’ pro-
jection) is shown in Table 1, and a shorter term 15 days’
projections forSeptember 15 is shown inTable2. Theprojected
overall mortality through September 30, 2020 ranged between
45 (95% CI = [41–58]) for Wyoming, and 33,201 (95% CI =
[33,059–33,441]) for New York, and 200,839 (95% CI =
[195,850–205,829]) for the United States (50 states and District
ofColumbia). Data show that the institutionofpandemiccontrol
measures had an impact that resulted flattening the curve.
However, as controlmeasureswere relaxed,many states had a
second surge; for example, California, Texas, and Florida are
currently experiencing their second major outbreak. The pro-
portion of two mixtures, π1 and π2 = 1 − π1, are also shown in
Table 1. Most of the states are characterized by the second
outbreak, dominating the curve. For example, the majority of

deaths through September 30, 2020 for California (π2 = 77%
versus π1 = 23%), Florida (π2 = 77% versus π1 = 23%), and
Texas (π2 = 85% versus π1 = 15%) are projected to occur
during thesecondsurge.Forother states, themajorityofdeaths
occurred during the first peak, with no new major surge pro-
jected through September 30, 2020, that is, New York, (π1 =
52% and π2 = 36%, versus π3 = 12%), New Jersey (π1 = 65%
versus π2 = 35%), Massachusetts (π1 = 45% and π2 = 37%
versus π3 = 18%), and Michigan (π1 = 48% and π2 = 33%
versus π3 = 19%). The majority of deaths for the entire country
are projected during the second surge (π2 = 56% versus π1 =
44%); however, the first peak was more severe—more than
2,250 deaths/day—whereas the second surge has a lower
peak—around 1,200 deaths/day—but is of longer duration.
Next, we evaluate the performance of the proposed

Bayesian mixture model by comparing the projections based
on the proposed Bayesian model to projections based on the
widely used IHMEhybridmodel18 (http://www.healthdata.org/
covid/data-downloads) updated on August 27, 2020, repre-
senting the last update in August. Our projections are derived
on August 31, 2020; however, following the revision of our

TABLE 1
Continued

State September 30 Projected* (95%CI) Peak1 π1 (%) Peak2 π2 (%) Peak3 π3 (%)

Ohio 4,821 4,624 (4,442–4,805) May 8, 2020 51 August 8, 2020 49 – –

4,912 (4,565–5,410)
Oklahoma 1,031 1,012 (887–1,137) April 23, 2020 32 August 23, 2020 68 – –

1,204 (954–1,640)
Oregon 559 564 (493–634) April 19, 2020 23 August 15, 2020 77 – –

590 (509–719)
Pennsylvania 8,224 7,993 (7,825–8,168) May 4, 2020 70 July 8, 2020 30 – –

8,515 (8,047–9,505)
Rhode Island 1,116 1,109 (1,055–1,193) May 16, 2020 86 September 4, 2020 14 – –

1,090 (1,065–1,132)
South Carolina 3,378 3,247 (2,936–3,558) May 3, 2020 14 July 12, 2020 10 August 10, 2020 77

3,515 (3,083–4,160)
South Dakota 223 182 (169–206) May 10, 2020 26 July 12, 2020 74 – –

196 (183–212)
Tennessee 2,454 2,392 (2,160–2,623) April 7, 2020 4 May 17, 2020 13 August 26, 2020 83

2,968 (2,143–4,467)
Texas 16,132 15,222 (13,433–19,820) May 5, 2020 15 August 17, 2020 85 – –

19,850 (16,450–24,306)
Utah 456 438 (414–479) May 14, 2020 36 July 29, 2020 64 – –

500 (452–565)
Vermont 58 62 (58–81) April 8, 2020 78 July 30, 2020 22 – –

59 (58–60)
Virginia 3,208 2,968 (2,652–3,574) May 7, 2020 49 July 1, 2020 10 August 22, 2020 40

2,589 (2,481–2,768)
Washington 2,128 2,170 (2,051–2,290) April 13, 2020 41 August 5, 2020 59 – –

2,224 (2,129–2,350)
West Virginia 350 311 (237–400) May 2, 2020 32 August 29, 2020 68 – –

250 (224–284)
Wisconsin 1,327 1,215 (1,146–1,301) May 9, 2020 67 August 10, 2020 33 – –

1,334 (1,183–1,555)
Wyoming 50 45 (41–58) May 12, 2020 57 August 14, 2020 43 – –

34 (32–36)
The United States 206,796 200,839 (195,850–205,829) April 16, 2020 44 August 6, 2020 56 – –

215,441 (206,733–223,361)
Average bias† (%) – – – – – – –

Bayesian model 5.8
IHME model 10.6

Median (IQR) bias†
Bayesian 1.45% (2.8–8.0%)
IHME model 1.75% (4.5–15.5%)
*Projectedmortality through September 30, 2020 is derived on August 31, 2020 for the Bayesianmodel (top estimate for each state and the United States), and on August 27, 2020 for the IHME

model (bottom estimate for each state, District of Colombia, and the United States).
†Average and median (IQR) bias are derived using 52 projections: 50 states, District of Colombia, and for the United States.
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TABLE 2
Projected COVID-19 mortality as of September 15, 2020 by state

State September 15 Projected* (95% CI) Peak1 π1 (%) Peak2 π2 (%) Peak3 π3 (%)

Alabama 2,387 2,375 (2,261–2,490) May 5, 2020 25 August 1, 2020 75 – –

2,198 (2,097–2,333)
Alaska 44 44 (40–54) April 4, 2020 22 August 11, 2020 78 – –

36 (33–41)
Arizona 5,344 5,377 (5,2051–5,548) May 7, 2020 17 July 19, 2020 10 July 28, 2020 73

5.532 (5,262–5,948)
Arkansas 1,010 1,021 (926–1,117) June 18, 2020 30 September 12, 2020 70 – –

881 (745–1,065)
California 14,615 14,750 (14,459–15,041) May 2, 2020 23 August 12, 2020 77 – –

15,186 (14,243–16,667)
Colorado 1,996 1,990 (1,955–2,070) May 2, 2020 77 July 24, 2020 23 – –

1,987 (1,951–2,053)
Connecticut 4,485 4,521 (4,468–4,604) April 26, 2020 75 May 29, 2020 25 – –

4,452 (4,443–4,470)
Delaware 618 619 (606–662) May 20, 2020 94 June 25, 2020 6 – –

608 (601–620)
District of Columbia 627 623 (609–653) May 1, 2020 66 June 13, 2020 34 – –

626 (622–632)
Florida 12,788 12,344 (12,073–12,615) May 6, 2020 23 August 6, 2020 77 – –

13,615 (12,247–15,857)
Georgia 6,398 6,531 (6,287–6,776) May 10, 2020 39 August 21, 2020 61 – –

6,450 (5,954–7,318)
Hawaii 100 105 (79–135) April 13, 2020 11 September 12, 2020 89 – –

59 (50–74)
Idaho 423 401 (372–443) April 19, 2020 23 August 12, 2020 77 – –

439 (376–535)
Illinois 8,564 8,527 (8,327–8,726) May 10, 2020 74 August 11, 2020 26 – –

8,471 (8,220–8,779)
Indiana 3,460 3,422 (3,332–3,543) May 2, 2020 58 July 19, 2020 42 – –

3,569 (3,464–3,714)
Iowa 1,234 1,238 (1,154–1,321) May 15, 2020 50 August 22, 2020 50 – –

1,298 (1,184–1,475)
Kansas 560 492 (472–538) April 22, 2020 34 August 7, 2020 66 – –

495 (476–531)
Kentucky 1,074 1,050 (978–1,121) April 28, 2020 30 August 24, 2020 70 – –

1,155 (1,008–1,375)
Louisiana 5,278 5,281 (5,119–5,443) April 12, 2020 28 May 10, 2020 27 August 9, 2020 45

5,333 (5,125–5,613)
Maine 137 136 (133–153) April 27, 2020 70 July 11, 2020 30 – –

135 (132–141)
Maryland 3,849 3,839 (3,778–3,959) May 6, 2020 69 July 11, 2020 31 – –

3,811 (3,778–3,849)
Massachusetts 9,225 9,206 (9,077–9,407) April 24, 2020 45 May 20, 2020 37 August 1, 2020 18

9,296 (9,180–9,455)
Michigan 6,932 6,903 (6,791–7,074) April 15, 2020 48 May 9, 2020 33 August 12, 2020 19

6,932 (6,836–7,077)
Minnesota 1,979 1,984 (1,889–2,085) May 18, 2020 71 August 22, 2020 29 – –

2,045 (1,978–2,130)
Mississippi 2,734 2,777 (2,649–2,906) May 12, 2020 31 August 12, 2020 69 – –

2,723 (2,561–2,967)
Missouri 1,866 1,831 (1,739–1,922) May 7, 2020 37 August 23, 2020 63 – –

1,860 (1,609–2,358)
Montana 140 120 (111–140) April 10, 2020 15 August 9, 2020 85 – –

102 (95–113)
Nebraska 436 422 (404–460) May 23, 2020 69 August 18, 2020 31 – –

432 (421–445)
Nevada 1,482 1,492 (1,397–1,587) April 28, 2020 28 August 13, 2020 72 – –

1,665 (1,446–2,003)
New Hampshire 438 448 (432–477) May 19, 2020 73 July 7, 2020 27 – –

437 (431–442)
New Jersey 16,166 16,164 (16,077–16,319) April 22, 2020 65 May 31, 2020 35 – –

16,038 (15,992–16,086)
New Mexico 830 824 (791–883) May 12, 2020 47 August 1, 2020 53 – –

848 (816–888)
New York 33,141 33,192 (33,059–33,432) April 8, 2020 52 April 29, 2020 36 June 7, 2020 12

33,011 (32,916–33,141)
North Carolina 3,127 3,056 (2,921–3,192) May 13, 2020 36 August 13, 2020 64 – –

3,064 (2,838–3,346)
North Dakota 172 158 (150–178) May 10, 2020 45 August 13, 2020 55 – –

(continued)
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article, the mortality data as of September 30, 2020 have be-
comeavailable; therefore,we include thesedata inTables 1 and
2. Consequently, we also evaluate the performance of each
projection based on the Bayesian model and IHME model by
calculating the bias and the mean square error (mean square
error ½MSE� �bias2 + ½fupper bound� lower boundg=4�2).
The results from both models are similar, with the Bayesian
model having lower bias and MSE in 35 of 52 projections for
September 15, 2020, and lower bias in 35 and lowerMSE in 38
of 52 projections for September 30, 2020. The average (me-
dian, IQR) bias for September 15 and September 30 projec-
tions were 2% (median = 0.4%, IQR = 1–2.25%) and 5.8%
(median = 1.45%, IQR = 2.8–7.96%), respectively, based on
the Bayesian model versus 5.5% (median = 0.8%, IQR =
1.65–6.0%) and 10.6% (median = 1.75%, IQR = 4.5–15.5%)
based on the IHME hybrid model.

DISCUSSIONS

The novel coronavirus, SARS-CoV-2, has caused an un-
precedented global public health crisis, with the pandemic

spreading to virtually every country worldwide in less than a
year and accompanied by overwhelming levels of related
morbidity and mortality. Predictive models continue to have a
fundamental role to play in estimating the future burden of
disease and in informing the allocation of critical laboratory,
medical, and public health resources needed to successfully
interrupt and eventually control the pandemic. We propose a
Bayesianmixturemodel, which can capturemultiple surges or
sub-epidemics attributed to a number of different underlying
factors, including the introduction and phasing out of control
measures.
As of August 31, 2020, a combination of two or three sub-

curves provided a parsimonious good fit for modeling daily
mortality curve among all states in the United States through
September 30, 2020. The results showed a second surge for
some states and a prolonged recovery for others. For many
states (e.g., Arizona, California, Florida, and Texas), most of
the cases occurred in the second or third peak characterized
by amajor surge starting in late July. Other states experienced
only a single major peak, but the distribution of mortality was
skewed with a long tail end of the distribution (e.g., New York,

TABLE 2
Continued

State September 15 Projected* (95% CI) Peak1 π1 (%) Peak2 π2 (%) Peak3 π3 (%)

175 (167–186)
Ohio 4,511 4,442 (4,297–4,586) May 8, 2020 51 August 8, 2020 49 – –

4,531 (4,356–4,763)
Oklahoma 912 927 (847–1,007) April 23, 2020 32 August 23, 2020 68 – –

988 (874–1,175)
Oregon 519 520 (470–573) April 19, 2020 23 August 15, 2020 77 – –

518 (478–576)
Pennsylvania 7,961 7,921 (7,825–8,092) May 4, 2020 70 July 8, 2020 30 – –

8,059 (7,849–8,441)
Rhode Island 1,090 1,085 (1,055–1,148) May 16, 2020 86 September 4, 2020 14 – –

1,061 (1,049–1,077)
South Carolina 3,098 3,074 (2,894–3,254) May 3, 2020 14 July 12, 2020 10 August 10, 2020 77

3,146 (2,909–3,465)
South Dakota 184 176 (169–199) May 10, 2020 26 July 12, 2020 74 – –

182 (175–191)
Tennessee 2,127 2,121 (1,955–2,247) April 7, 2020 4 May 17, 2020 13 August 26, 2020 83

2,323 (1,932–2,917)
Texas 14,717 14,487 (13,433–16,418) May 5, 2020 15 August 17, 2020 85 – –

16,321 (14,616–18,419)
Utah 436 431 (414–468) May 14, 2020 36 July 29, 2020 64 – –

454 (431–486)
Vermont 58 61 (58–78) April 8, 2020 78 July 30, 2020 22 – –

58 (58–59)
Virginia 2,839 2,810 (2,652–3,038) May 7, 2020 49 July 1, 2020 10 August 22, 2020 40

2,540 (2,471–2,643)
Washington 2,015 2,070 (1,974–2,167) April 13, 2020 41 August 5, 2020 59 – –

2,079 (2,033–2,143)
West Virginia 280 276 (237–327) May 2, 2020 32 August 29, 2020 68 – –

221 (207–239)
Wisconsin 1,220 1,222 (1,146–1,267) May 9, 2020 67 August 10, 2020 33 – –

1,229 (1,149–1,314)
Wyoming 46 44 (41–55) May 12, 2020 57 August 14, 2020 43 – –

34 (32–36)
The United States 195,660 194,904 (192,696–201,995) April 16, 2020 44 August 6, 2020 56 – –

198,702 (194,462–202,382)
Average bias† (%) – – – – – – – –

Bayesian model 2
IHME model 5.5

Median (IQR) bias† –

Bayesian model 0.4% (1.0–2.25%)
IHME model 0.8% (1.65–6.0%)
*Projectedmortality through September 15, 2020 is derived on August 31, 2020 for the Bayesianmodel (top estimate for each state and the United States), and on August 27, 2020 for the IHME

model (bottom estimate for each state, District of Columbia, and for the United States).
†Average and median (IQR) bias are derived based on 52 projections: 50 states, District of Colombia, and for the United States.
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NewJersey, andMichigan). Importantly, themixturemodeling
approach accommodates the fit of both multimodal and
unimodal skewed distribution as shown in Supplemental
Figure 1. The shapes of the mortality curves reveal that even
for states that have successfully lowered mortality relative to
its peak, it remains consistently greater than zero with a long
tail or is even increasing. This is an indication of how chal-
lenging itwill be to eradicate thepandemicor to reduce the risk
of new surges if control measures are phased out too quickly.
There is limited information to informhowapost-peakworld

will appear. At this point, we lack sufficient data on numerous
parameters, including duration of immunity, the degree of
public compliance with social distancing over time, and the
political and governmental response to COVID-19, among
others.8 A gradual and data-driven relaxation of restrictions
accompanied by continuous monitoring is necessary to avert
an exponential increase in the cumulative number of cases.19

Alterations in social mixing patterns and increased contact
among susceptible individuals will clearly result in ongoing
challenges to achieving control of the pandemic.20

Our monthly predictions run through September 30, 2020,
at which point the number of projected deaths is low for many
states. However, as children return to school, lockdown or-
ders expire, social distancing behaviors are relaxed, and in-
dividuals engage in greater social mixing including traveling
during the holidays; there is likely to be a prolongation of
transmission potentially accompanied by new surges and an
overall increase in COVID-19 mortality. This also serves to
underscore the importance of regularly updating model pro-
jections using an appropriate number of mixtures to capture
new surges as they occur. Mathematical models can play a
key role in better understanding the course of the pandemic.
However, it is also important to be familiarwith their underlying
assumptions, strengths, and limitations. Given the dynamic
and rapidly changing nature of the pandemic, any long-term
projections will be sensitive to unforeseen changes. As such,
these models are most reliable at shorter term monthly pro-
jections, and for monitoring trends, which inform planning for
optimal management and distribution of resources, and
evaluating the impact of control measures on the pandemic.
Conversely, long-term projections for number of cases or
deaths are sensitive to even small daily changes as these can
translate into larger cumulative changes. This does not nec-
essarily speak to model shortcomings as much as it confirms
the dynamic nature of the disease transmission and changes
in factors related to it. Specifically, in the last several months
(after this articlewas submitted), two vaccines againstCOVID-
19 were developed by Pfizer and Moderna. Although both
vaccines are highly effective, there are many logistic chal-
lenges to achieve a high rate of vaccination. In addition, new
strains of the virus are occurring, and it is hard to know what
the new strains will look like in months from now or how re-
sistant they will be to the vaccines.
The proposed Bayesian mixture model is an effective tool

for monitoring the pandemic over time and consequently
provides monthly projections. Such model can and should be
used in a rolling basesasnewdata come in.Whereas updating
estimates using additional data is helpful, constant changesof
the model used for prediction introduce the risk of overfitting
the observed data, and potentially give rise to inconsistent
projections. Anyupdateof amodel shouldbeguidedby theory
thatmay include using different numbers ofmixtures basedon

the data or the occurrence of new factors affecting the pan-
demic that may result in new surges.
The quality of the model prediction will also depend on the

availability of data. In the early stages of an epidemic, or even
the early post-peak phases, data are often limited,with aweak
data signal relative to the noise. Consequently, any model
projectionswill bemore sensitive to initial assumptionsor prior
information. Our Bayesian approach can accommodate dif-
ferent levels of prior knowledge and uncertainty into the
model, such as information from other countries by in-
troducing informative prior distributions. In general, using
weakly informative priors is preferred,16 as they have low im-
pact in early projections that quickly fade away while more
data become available, and in return, they improve model
convergence. For the current modeling, we did not use in-
formative priors in any of the model parameters.
In summary, Bayesian mixture models are useful for moni-

toring andpredictingCOVID-19–relatedmortality in theUnited
States or globally. These models are particularly helpful for
identifying multiple surges and forecasting trajectories of
skewed and multimodal curves. The results for the United
States basedondata as of August 31, 2020 showed thatmany
states are experiencing a second surge, which for many is of
greater magnitude than the first. Our model was able to more
accurately characterize the actual bimodal shape of the pan-
demicmortality curves through September 30 formany states
or unimodal but skewed curves reflecting the prolonged re-
covery for other states like New York.
We are running our model regularly using the most updated

data; themodel performswell and isable tocapture thenewsurge
(after August 31, 2020) by increasing the number of mixtures.
Identifying and monitoring the dynamic or multiple surges is

important to understanding why such sub-epidemics occurred,
and to inform future policy and practice decisions to more ef-
fectively prevent them. Moreover, providing regular pandemic
forecasts is needed to guide the introduction or phasing out of
programmatic interventions intended to control transmission in
addition to providing an evidence-based decision-making for
optimal resource allocation to address feature health needs.
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