Case Report: Autochthonous Case of Human Visceral Leishmaniasis in the West Bank, Palestine

Ahmed Al-Jawabreh,1,2 Suheir Ereqat,2 Kamal Dumaidi,3 Abdelmajeed Nasereddin,4 Samer Sawalha,5 Hanan Al-Jawabreh,1 and Amer Al-Jawabreh1,3

1Leishmaniases Research Unit, Jericho, Palestine; 2Faculty of Medicine, Al-Quds University, Jerusalem, Palestine; 3Arab American University, Jenin, Palestine; 4Al-Quds Nutrition and Health Research Institute, Faculty of Medicine, Al-Quds University Abu Deis, Jerusalem, Palestine; 5Ministry of Health, Ramallah, Palestine

Abstract. Human visceral leishmaniasis (HVL) is a parasitic disease infecting children in the Mediterranean region. Here, we portray a case of a 2-year-old child with an epidemiological description of the situation surrounding the case. The patient was suffering from recurrent fever, weakness, and abdominal discomfort associated with loss of appetite. Routine blood investigations showed pancytopenia, whereas examination revealed hepatomegaly. A diagnosis of HVL was made by demonstrating amastigotes in a Giemsa-stained smear from a bone marrow aspirate followed by genotyping by PCR and sequencing. In conclusion, early detection of VL infection followed by appropriate treatment protocols is essential to saving the patient.

INTRODUCTION

Visceral leishmaniasis (VL) in the Mediterranean Basin is a zoonotic disease caused by the protozoan parasite *Leishmania infantum* which, if not treated, is fatal to humans and canids. Visceral leishmaniasis caused by *L. infantum* is transmitted by the bite of 20 female sand fly species, seven of which have been reported in the northern and southern Mediterranean regions including *Phlebotomus papatasi*, *Phlebotomus (larroussius) perniciosus*, *Phlebotomus (larroussius) syriacus*, *Phlebotomus (larroussius) ariasi*, *Phlebotomus (larroussius) neglectus*, *Phlebotomus (larroussius) tobbi*, and *Phlebotomus (larroussius) perfiliewi*.1–6 Dog is the main reservoir and host showing symptoms ranging from mildly asymptomatic to apparently severe manifestations.7 Around 2.5 million dogs are estimated to be infected with *L. infantum* in the Mediterranean region.8 A study in Palestine showed that 17% of the domestic dogs suffered from canine VL caused by *L. infantum*.9 Human visceral leishmaniasis (HVL) commonly causes prolonged high-grade fever (up to 40°C), paleness, and hepatosplenomegaly. Other symptoms include anorexia, irritability, rhinorrhea, vomiting, and diarrhea.10 Laboratory findings in HVL cases include pancytopenia, neutropenia, thrombocytopenia, microcytic hypochromic anemia, elevated C-reactive protein (CRP) (> 100 mg/L), and erythrocyte sedimentation rate (ESR) (> 40 mm/hour).10 Approximately 50,000–90,000 new cases of HVL are estimated to occur worldwide each year, out of which only an estimated 25–45% is reported. More than 95% of new cases occurred in 10 countries: Bangladesh, Brazil, China, Ethiopia, India, Kenya, Nepal, Somalia, South Sudan, and Sudan.11 In the Mediterranean region, VL is reported in 25 countries, with a total of 875 reported cases and an estimated number of cases ranging between 1,200 and 2,000 per year. In Palestine, VL is rare and only sporadically affecting children.9,12,13 Three of the seven potential sandfly vectors of *L. infantum* in the Mediterranean area have been caught in Palestine.14 In this study, we report a case of VL caused by *L. infantum* in a rural area in Palestine and investigate the life cycle components, vector, and reservoir, in the patient’s vicinity.

METHODS

Bone marrow aspirate was taken from the back of the pelvic bone (upper iliac crest) of the patient in Beit-Jala government hospital as part of the routine diagnostic procedure as described by Bain.15 Blood was collected by venipuncture of the median cubital vein in the antecubital fossa antecubital vein for blood chemistry and hematology profile according to protocol. One drop of bone marrow aspirate was spread on a slide as thin film, air-dried, fixed in absolute methanol, and Giemsa-stained as described by others.16 The unstained bone marrow on one of the slides was scrapped off and DNA-extracted using Qiagen kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions and kept at −20°C until use. PCR was used to amplify the internal transcribed spacer 1–PCR as described earlier.17–19 Amplicon was sent for commercial sequencing. The DNA sequence was used to identify species of leishmania by BLAST search against leishmania species in the GenBank (www.ncbi.nlm.nih.gov) database. Blood samples were collected from dogs in the patient’s village (Beit Ola village in Al-Khail) and its vicinity and processed as described earlier.9 Dogs’ sera were tested for the presence of anti-leishmanial antibodies by ELISA as described elsewhere.9 Sand flies were collected from the patient’s house using aspirators. Collection was conducted early morning in the month of June during the biting season. Sandfly identification and classification were conducted using conventional keys.14 Leishmanial infection rate and identification of leishmania species in sand flies were conducted simultaneously by next-generation sequencing using Illumina MiSeq next-generation sequencer as described previously.20,21

CASE PRESENTATION

A 2-year-old female child from a mountainous rural area in Palestine was referred to the local government hospital in September 2018 after 2 months of suffering from prolonged high fever (41°C) and loss of appetite. Physical examination confirmed by ultrasonography manifested hepatomegaly of 12.3 cm (normal is 9 cm). In the laboratory, complete blood count revealed pancytopenia: hemoglobin level of 7.0 (reference range: 11.5–15.5 g/dL), hematocrit of 22.3 (reference range: 33–49%), erythrocyte count of 3.27 × 10⁶/μL (reference range: 4.5–5.5 × 10⁶/μL), leukocyte count of 5.0 × 10³/μL (reference range: 5.5–11.0 × 10³/μL), and platelet count of 2.0 × 10⁴/μL (reference range: 150–400 × 10³/μL).

"Address correspondence to Amer Al-Jawabreh, Jericho, Al-Quds.st., The West Bank, Palestine. E-mails: islahjr@yahoo.com or amer.aljawabreh@aaup.edu"
VISCERAL LEISHMANIASIS IN PALESTINE

This autochthonous HVL case report confirmed, by DNA sequencing, L. infantum as the cause of HVL in Palestine (GenBank: MK311268). Human visceral leishmaniasis has declined from 18 cases in 1996 to three cases in 2017 at an annual incidence rate ranging from 0.6 to 0.02 cases per 100,000 within the same period.\(^1\) The findings in this report are in agreement with previous studies on canine VL in the same area in which canine VL has been proven to be caused by L. infantum parasites at a seropositivity rate of 17%.\(^9,12,22,23\) The distribution of the cases was mainly in the rural areas of the western side of the West Bank and affecting

FIGURE 1. Giemsa-stained bone marrow smear showing intracellular amastigotes as pale-blue oval bodies, 2–5 μm in diameter, with a single violet-blue nucleus. The point-shaped kinetoplast is also evident. This figure appears in color at www.ajtmh.org.

TABLE 1
Clinical chemistry profiles for the visceral leishmaniasis patient during Pentostam therapy

<table>
<thead>
<tr>
<th>Test</th>
<th>Patient range</th>
<th>Reference value</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine transaminase</td>
<td>10–21.3</td>
<td>0–33 U/L</td>
<td>Normal</td>
</tr>
<tr>
<td>Aspartate aminotransferase</td>
<td>22.8–31.4</td>
<td>0–37 U/L</td>
<td>Normal</td>
</tr>
<tr>
<td>Lactate dehydrogenase</td>
<td>303–380</td>
<td>180–430 U/L</td>
<td>Normal</td>
</tr>
<tr>
<td>Creatine kinase, total</td>
<td>20–24</td>
<td>0–170 U/L</td>
<td>Normal</td>
</tr>
<tr>
<td>Creatinine</td>
<td>0.17–0.63</td>
<td>0.5–0.9 mg/dL</td>
<td>Normal</td>
</tr>
<tr>
<td>Blood urea nitrogen</td>
<td>5.3–8</td>
<td>5–18 mg/dL</td>
<td>Normal</td>
</tr>
<tr>
<td>Uric acid</td>
<td>3.1</td>
<td>1.7–5.8 mg/dL</td>
<td>Normal</td>
</tr>
<tr>
<td>High-sensitive C-reactive protein</td>
<td>114</td>
<td>0–5 g/L</td>
<td>Increased</td>
</tr>
<tr>
<td>Erythrocyte sedimentation rate</td>
<td>40–159</td>
<td>0–10 mm</td>
<td>Increased</td>
</tr>
<tr>
<td>Total iron binding capacity</td>
<td>209–228</td>
<td>250–425 μg/dL</td>
<td>Decreased</td>
</tr>
<tr>
<td>Ferritin</td>
<td>979</td>
<td>4.63–204 ng/mL</td>
<td>Increased</td>
</tr>
<tr>
<td>Iron, total</td>
<td>13.7</td>
<td>37–145 μg/dL</td>
<td>Decreased</td>
</tr>
<tr>
<td>Calcium</td>
<td>9.3</td>
<td>9–11 mg/dL</td>
<td>Normal</td>
</tr>
<tr>
<td>Sodium</td>
<td>136</td>
<td>136–145 mEq/L</td>
<td>Normal</td>
</tr>
<tr>
<td>Magnesium</td>
<td>2.01</td>
<td>1.6–2.6 mg/dL</td>
<td>Normal</td>
</tr>
<tr>
<td>Potassium</td>
<td>4.5</td>
<td>3.5–5.1 mEq/L</td>
<td>Normal</td>
</tr>
<tr>
<td>Glucose, random</td>
<td>123</td>
<td>74–110 mg/dL</td>
<td>Increased</td>
</tr>
</tbody>
</table>

...
children in particular. The family including the patient has no previous history with HIV. The rural area is leading a noticeable agricultural activity with domestic and stray dogs around. This case report instantiates the need to consider HVL in cases of prolonged fever of unknown origin or hepatomegaly. Early detection and timely treatment of HVL is paramount because of the high mortality rate of untreated cases. Pentostam therapy is effective in treating HVL cases in Palestine without any signs of resistance. Sandfly vectors and reservoir dogs should be considered for the control of HVL parallel to health awareness campaigns.

Received February 12, 2020. Accepted for publication June 19, 2020. Published online July 27, 2020.

Acknowledgment: The American Society of Tropical Medicine and Hygiene (ASTMH) assisted with publication expenses.

Authors’ addresses: Ahmed Al-Jawabreh and Suheir Ereqat, Faculty of Medicine, Al-Quds University, Jerusalem, Palestine, E-mails: ahmed.aljawabreh000@gmail.com and sereqat@staff.alquds.edu. Kamal Dumaidi, Arab American University, Jenin, Palestine, E-mail: kamal.dumaidi@aaup.edu. Abdelmajeed Nasrededin and Hanan Al-Jawabreh, Leishmaniases Research Unit, Jericho, Palestine, E-mails: abedn@ekmd.huji.ac.il and al.jawabreh@gmail.com. Samer Sawalha, Ministry of Health, Ramallah, Palestine, E-mail: ss_sawalha@yahoo.com. Amer Al-Jawabreh, Leishmaniasis Research Unit, Jericho, Palestine, and Arab American University, Jenin, Palestine, E-mails: islajjr@yahoo.com or amer.aljawabreh@aaup.edu.

REFERENCES