1921
Volume 103, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Large-scale control efforts in sub-Saharan Africa may leave long-term lingering transmission. Large-scale screening of snail infection prevalence by loop-mediated isothermal amplification will enable accurate determination of man-to-snail transmission, as well as the effects of biota in snail habitat on host capacity and thus on snail-to-man transmission. Next-generation sequencing will enable identification of gut content of snails and thus their feeding preferences in hot spots and in non–hot spots, as well as for identification of attractive vegetation types for attracting snails to molluscicides.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.20-0111
2020-08-10
2020-10-31
Loading full text...

Full text loading...

/deliver/fulltext/14761645/103/4/tpmd200111.html?itemId=/content/journals/10.4269/ajtmh.20-0111&mimeType=html&fmt=ahah

References

  1. Colley DG, Bustinduy AL, Secor WE, King CH, 2014. Human schistosomiasis. Lancet 383: 22532264.
    [Google Scholar]
  2. Fenwick A et al., 2009. The Schistosomiasis Control Initiative (SCI): rational, development and implementation from 2002–2008. Parasitology 136: 17191730.
    [Google Scholar]
  3. Webster JP, Molyneux DH, Hotez PJ, Fenwick A, 2014. The contribution of mass drug administration to global health – past, present and future. Philos Trans R Soc Lond B Biol Sci 369: 20130434.
    [Google Scholar]
  4. WHO, 2012. A Roadmap to Elmination. Geneva, Switzerland: World Health Organization.
    [Google Scholar]
  5. WHO, 2013. Schistosomiasis: Progress Report 2001–2011 and Strategic Plan 2012–2020. Geneva, Switzerland: World Health Organization.
    [Google Scholar]
  6. Sokolow SH, Wood CL, Jones IJ, Swartz SJ, Lopez M, Hsieh MH, Lafferty KD, Kuris AM, Rickards C, De Leo GA, 2016. Global assessment of schistosomiasis control over the past century shows targeting the snail intermediate host works best. PLoS Negl Trop Dis 10: e0004794.
    [Google Scholar]
  7. Shiff C, 2017. Why reinvent the wheal. Lessons in schistosomiasis control from the past. PLoS Negl Trop Dis 11: e0005812.
    [Google Scholar]
  8. Wood CL et al., 2019. Precision mapping of snail habitat provides a powerful indicator of human schistosomiasis transmission. Proc Natl Acad Sci U S A 116: 2318223191.
    [Google Scholar]
  9. Lamberton PHL, Kabetereine N, Ogutu D, Fenwick A, Webster JP, 2014. Sensitivity and specificity of multiple Kato-Katz thick smears and a circulating cathodic antigen test for Schistosoma mansoni diagnosis pre- and post-repeated praziquantel treatment. PLoS Negl Trop Dis 8: e3139.
    [Google Scholar]
  10. van Lieshout L, Polderman AM, Deelder AM, 2000. Immunodiagnosis of schistosomiasis by determination of the circulating antigens CAA and CCA, in particular in individuals with recent or light infections. Acta Trop 77: 6980.
    [Google Scholar]
  11. van Dam GJ, Wichers JH, Ferreira TM, Ghati D, van Amerongen A, Deelder AM, 2004. Diagnosis of schistosomiasis by reagent-strip test for detection of circulating cathodic antigen. J Clin Microbiol 42: 54585461.
    [Google Scholar]
  12. Colley DG et al., 2013. A five-country evaluation of a point-of-care circulating cathodic antigen urine assay for the prevalence of Schistosomiasis mansoni. Am J Trop Med Hyg 88: 426432.
    [Google Scholar]
  13. Tchuenté L-A, Rollinson D, Stothard JR, Molineux D, 2017. Moving from control to elimination of schistosomiasis in sub-Saharan Africa: time to change and adapt strategies. Infect Dis Poverty 6: 42.
    [Google Scholar]
  14. Bergquist R, Zhou X-N, Rollinson D, Reinhard-Rupp J, Klohe K, 2017. Elimination of schistosomiasis: the tools required. Infect Dis Poverty 6: 158.
    [Google Scholar]
  15. Lo NC et al., 2017. A call to strengthen the global strategy for schisrosomiasis and soil-transmitted helminthiasis: the time is now. Lancet Inf Dis 17: e64e69.
    [Google Scholar]
  16. Fonseca CT, Oliviera SC, Alves CC, 2015. Elimination of schistosoma by vaccination; what are the best weapons. Front Immunol 6: 95.
    [Google Scholar]
  17. Secor WE, 2014. Water-based interventions for schistosomiasis control. Pathog Glob Health 108: 246254.
    [Google Scholar]
  18. King CH, Bertsch D, 2015. Historical perspective: snail control to prevent schistosomiasis. PLoS Negl Trop Dis 9: e0003657.
    [Google Scholar]
  19. Knopp S et al., 2012. Study and implementation of urogenital schistosomiasis elimination in Zanzibar (Unguja and Pemba islands) using an integrated multidisciplinary approach. BMC Public Health 12: 930.
    [Google Scholar]
  20. Chu KY, 1978. Trials of ecological and chemical measures for the control of Schistosoma haematobium transmission in a Volta Lake village. Bull World Health Organ 56: 313322.
    [Google Scholar]
  21. Kariuki HC, Madsen H, Ouma JH, Butterworth AE, Dunne DW, Booth M, Kimani G, Mwrtha JK, Muchiri E, Venervald BJ, 2013. Long term study on the effect of mollusciciding with niclosamide in stream habitats on transmission of Schistosoma mansoni after community based chemotherapy in Makueni district, Kenya. Parasit Vectors 6: 107.
    [Google Scholar]
  22. Jullien M, 2013. Using Pawns to Battle a Killer Disease in Senegal. Africa: BBC News. Available at: http//www.bbc.co/news/world-africa-21080224.
    [Google Scholar]
  23. Hofkin BV, Mkoji GM, Koech DK, Loker ES, 1991. Control of schistosome transmitting snails in Kenya by the North American crayfish Procambarus clarkia. Am J Trop Med Hyg 45: 339344.
    [Google Scholar]
  24. Mkoji GM et al., 1999. Impact of the crayfish Procambarus clarkii on Schistosoma haematobium transmission in Kenya. Am J Trop Med Hyg 61: 751759.
    [Google Scholar]
  25. Sleigh A, Li X, Jackson S, Huang K, 1998. Eradication of schistosomiasis in Guangxi, China. Part I: setting, strategies, operations, and outcomes. 1953–92. Bull World Health Organ 76: 361372.
    [Google Scholar]
  26. Pointier JP, Jourdane J, 2000. Biological control of the snail hosts of schistosomiasis in areas of low transmission: the example of the Caribbean area. Act Trop 77: 5360.
    [Google Scholar]
  27. Hamburger J, Abbasi I, Kariuki C, Wanjala A, Mzungu E, Mungai P, Muchiri E, King CH, 2013. Evaluation of loop-mediated isothermal amplification suitable for molecular monitoring of schistosome-infected snails in field laboratories. Am J Trop Med Hyg 88: 344351.
    [Google Scholar]
  28. Qin ZQ et al., 2018. Field evaluation of a loop-mediated isothermal amplification (lamp) platform for the detection of Schistosoma japonicum infection in Oncomelania hupensis snails. Trop Med Infect Dis 3: 124.
    [Google Scholar]
  29. Nissen N, Stothard R, 2016. Equitable control of schistosomiasis and helminthiasis. Lancet Infect Dis 16: 990992.
    [Google Scholar]
  30. Walz I, Wegmann M, Dech S, Raso G, Utzinger J, 2015. Risk profiling of schistosomiasis using remote sensing: approaches, challenges, and outlook. Parasit Vectors 8: 163.
    [Google Scholar]
  31. Carrasco-Escobar G et al., 2019. High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery. PLoS Negl Trop Dis 13: e0007105.
    [Google Scholar]
  32. Hertel J, Hamburger J, Haberl B, Haas W, 2002. Detection of bird schistosomes by PCR and filter hybridization. Exp Parasitol 101: 5763.
    [Google Scholar]
  33. Abbasi I, Hamburger J, Kariuki C, Mungai PL, Muchiri EM, King CH, 2012. Differentiating Schistosoma haematobium from related animal schistosomes by PCR amplifying inter-repeat sequences flanking newly selected repeated sequences. Am J Trop Med Hyg 87: 10591064.
    [Google Scholar]
  34. Abbasi I, Webster BL, King CH, Rollinson D, Hamburger J, 2017. The substructure of three repetitive DNA regions of Schistosoma haematobium group species, aiding species recognition and detection of interbreeding. Parasit Vectors 10: 364.
    [Google Scholar]
  35. Hamburger J, He N, Xin YX, Ramzy RM, Jourdane J, Ruppel A, 1998. A polymerase chain reaction assay for detecting snails infected with bilharzia parasites (Schistosoma mansoni) from very early prepatency. Am J Trop Med Hyg 59: 872876.
    [Google Scholar]
  36. Hamburger J, He N, Abbasi I, Ramzy RM, Jourdane J, Ruppel A, 2001. A polymerase chain reaction assay based on a highly repeated sequence of S. haematobium: a potential tool for monitoring schistosome-infested water. Am J Trop Med Hyg 65: 907911.
    [Google Scholar]
  37. Kariuki HC et al., 2004. Distribution patterns and cercarial shedding of Bulinus nasutus and other snails in Msambweni area, Coast province, Kenya. Am J Trop Med Hyg 70: 449456.
    [Google Scholar]
  38. Nyandwi E, Veldkamp A, Amer S, Karema C, Umulisa I, 2017. Schistosomiasis mansoni incidence data in Rwanda can improve prevalence assessments, by providing high-resolution hotspot and risk factors identification. BMC Public Health 17: 845.
    [Google Scholar]
  39. Mossalam SF, Amer EI, Abi-El-Naga IF, 2013. New scope on the relationship between rotifers and Biomphalaria alexandrina snail. Asian Pac J Trop Med Biomed 3: 595603.
    [Google Scholar]
  40. Gao J, Yang N, Lewis FA, Yau P, Collins JJ, Jonathan V, Sweedler ID, Phillip A, Newmark ID, 2019. A rotifer-derived paralytic compound prevents transmission of schistosomiasis to a mammalian host. PLoS Biol 17: e3000485.
    [Google Scholar]
  41. Hamburger J, Hoffman O, Kariuki HC, Muchiri EM, Ouma JH, Koech DK, Sturrock RF, King CH, 2004. Large-scale polymerase chain-reaction-based surveillance of Schistosoma haematobium DNA in snails from transmission sites in coastal Kenya: a new tool for studying the dynamics of snail infection. Am J Trop Med Hyg 71: 765763.
    [Google Scholar]
  42. Kittur N, Binder S, Campbell CH Jr., King CH, Kinung’hi S, Olsen A, Magnussen P, Colley DG, 2019. Defining persistent hotspots: areas that fail to decrease meaningfully in prevalence after multiple years of mass drug administration with paraziquantel for control of schistosomiasis. Am J Trop Med Hyg 97: 18101817.
    [Google Scholar]
  43. Walker JW, Kittur N, Binder S, Castelman JD, Darke JM, Campbell CH Jr., King CH, Colley DJ, 2019. Environmental predictors of schistosomiasis persistent hotspots following mass treatment with praziquantel. Am J Trop Med Hyg 102: 328338.
    [Google Scholar]
  44. Abassi I et al., 2018. Plant-feeding phlebotomine sand flies, vectors of leishmaniasis, prefer cannabis sativa. Proc Natl Acad Sci U S A 115: 1179011795.
    [Google Scholar]
  45. ElMelawy MH, 2009. Evaluation of polymeric molluscicide-attractant (niclosamide L-glutamate) as a focal control of Biomphalaria alexandrina, the vector snail of schistosomiasis. Egypt J Exp Biol 5: 175182.
    [Google Scholar]
  46. Pfister G, El-Naggar M, Bahadir M, 1994. Evaluation of controlled release molluscicide formulations with improved environmental acceptance. Chemosphere 28: 305312.
    [Google Scholar]
  47. Abdel Hamis AZ, Massden H, 1995. Chemoattraction of Biomphalaria alexandrina (gastropoda: planorbidae) to different sugars. International Conference on Schistosomiasis. Cairo, Egypt, 247.
    [Google Scholar]
  48. Uhazy LS, Tanaka RD, McInnis AJ, 1978. Schistosoma mansoni: identification of chemicals that attract or trap its snail vector, Biomphalaria glabrata. Science 201: 924926.
    [Google Scholar]
  49. Shokralla S, Spall JL, Gibson JF, Hajibabaei M, 2012. Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21: 17941805.
    [Google Scholar]
  50. Fageria NK, Barbosa Filho MC, Moreira A, Guimar CM, 2009. Foliar fertilization of crop plants. J Plant Nutr 32: 10441064.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.20-0111
Loading
  • Received : 10 Feb 2020
  • Accepted : 15 Jun 2020
  • Published online : 10 Aug 2020
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error