1921
Volume 101, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

In this review, we provide an epidemiological history of the emergence and ongoing spread of evolving artemisinin resistance (ARTR). Southeast Asia has been the focal point for emergence and spread of multiple antimalarial drug resistance phenomena, and is once again for evolving ARTR, also known as the “delayed clearance phenotype” (DCP). The five countries most impacted, Cambodia, Thailand, Myanmar, Laos, and Vietnam, each have complex histories of antimalarial drug use over many decades, which have in part molded the use of various artemisinin combination therapies (ACTs) within each country. We catalog the use of ACTs, evolving loss of ACT efficacy, and the frequency of mutations (mutations associated with ARTR) in the Greater Mekong Subregion and map the historical spread of ARTR/DCP parasites. These data should assist improved surveillance and deployment of next-generation ACTs.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0379
2019-10-21
2021-01-21
Loading full text...

Full text loading...

/deliver/fulltext/14761645/101/6/tpmd190379.html?itemId=/content/journals/10.4269/ajtmh.19-0379&mimeType=html&fmt=ahah

References

  1. Qinghaosu Antimalaria Coordinating Research Group, 1979. Antimalaria studies on qinghaosu. Chin Med J (Engl) 92: 811816.
    [Google Scholar]
  2. Jiang JB, Li GQ, Guo XB, Kong YC, Arnold K, 1982. Antimalarial activity of mefloquine and qinghaosu. Lancet 2: 285288.
    [Google Scholar]
  3. Li GQ, Arnold K, Guo XB, Jian HX, Fu LC, 1984. Randomised comparative study of mefloquine, qinghaosu, and pyrimethamine-sulfadoxine in patients with falciparum malaria. Lancet 2: 13601361.
    [Google Scholar]
  4. Myint PT, Shwe T, 1987. A controlled clinical trial of artemether (qinghaosu derivative) versus quinine in complicated and severe falciparum malaria. Trans R Soc Trop Med Hyg 81: 559561.
    [Google Scholar]
  5. Shwe T, Myint PT, Htut Y, Myint W, Soe L, 1988. The effect of mefloquine-artemether compared with quinine on patients with complicated falciparum malaria. Trans R Soc Trop Med Hyg 82: 665666.
    [Google Scholar]
  6. Arnold K, Tran TH, Nguyen TC, Nguyen HP, Pham P, 1990. A randomized comparative study of artemisinine (qinghaosu) suppositories and oral quinine in acute falciparum malaria. Trans R Soc Trop Med Hyg 84: 499502.
    [Google Scholar]
  7. Bunnag D, Viravan C, Looareesuwan S, Karbwang J, Harinasuta T, 1991. Double blind randomised clinical trial of oral artesunate at once or twice daily dose in falciparum malaria. Southeast Asian J Trop Med Public Health 22: 539543.
    [Google Scholar]
  8. Looareesuwan S, Viravan C, Vanijanonta S, Wilairatana P, Suntharasamai P, Charoenlarp P, Arnold K, Kyle D, Canfield C, Webster K, 1992. Randomised trial of artesunate and mefloquine alone and in sequence for acute uncomplicated falciparum malaria. Lancet 339: 821824.
    [Google Scholar]
  9. White NJ, Waller D, Crawley J, Nosten F, Chapman D, Brewster D, Greenwood BM, 1992. Comparison of artemether and chloroquine for severe malaria in Gambian children. Lancet 339: 317321.
    [Google Scholar]
  10. Alin MH, Kihamia CM, Bjorkman A, Bwijo BA, Premji Z, Mtey GJ, Ashton M, 1995. Efficacy of oral and intravenous artesunate in male Tanzanian adults with Plasmodium falciparum malaria and in vitro susceptibility to artemisinin, chloroquine, and mefloquine. Am J Trop Med Hyg 53: 639645.
    [Google Scholar]
  11. von Seidlein L et al., 2000. Efficacy of artesunate plus pyrimethamine-sulphadoxine for uncomplicated malaria in Gambian children: a double-blind, randomised, controlled trial. Lancet 355: 352357.
    [Google Scholar]
  12. Adjuik M et al., 2002. Amodiaquine-artesunate versus amodiaquine for uncomplicated Plasmodium falciparum malaria in African children: a randomised, multicentre trial. Lancet 359: 13651372.
    [Google Scholar]
  13. World Health Organization, 2006. Guidelines for the Treatment of Malaria. Geneva, Switzerland: WHO.
    [Google Scholar]
  14. Straimer J et al., 2015. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347: 428431.
    [Google Scholar]
  15. Witkowski B, Lelièvre J, Barragán MJ, Laurent V, Su XZ, Berry A, Benoit-Vical F, 2010. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother 54: 18721877.
    [Google Scholar]
  16. Dondorp AM et al., 2009. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455467.
    [Google Scholar]
  17. Dogovski C et al., 2015. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance. PLoS Biol 13: e1002132.
    [Google Scholar]
  18. Tucker MS, Mutka T, Sparks K, Patel J, Kyle DE, 2012. Phenotypic and genotypic analysis of in vitro-selected artemisinin-resistant progeny of Plasmodium falciparum. Antimicrob Agents Chemother 56: 302314.
    [Google Scholar]
  19. Njokah MJ, Kang’ethe JN, Kinyua J, Kariuki D, Kimani FT, 2016. In vitro selection of Plasmodium falciparum Pfcrt and Pfmdr1 variants by artemisinin. Malar J 15: 381.
    [Google Scholar]
  20. Rocamora F, Zhu L, Liong KY, Dondorp A, Miotto O, Mok S, Bozdech Z, 2018. Oxidative stress and protein damage responses mediate artemisinin resistance in malaria parasites. PLoS Pathog 14: e1006930.
    [Google Scholar]
  21. Cui L, Wang Z, Miao J, Miao M, Chandra R, Jiang H, Su XZ, Cui L, 2012. Mechanisms of in vitro resistance to dihydroartemisinin in Plasmodium falciparum. Mol Microbiol 86: 111128.
    [Google Scholar]
  22. Witkowski B et al., 2013. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis 13: 10431049.
    [Google Scholar]
  23. World Health Organization, 2018. Status Report on Artemisinin Resistance and ACT Efficacy (August 2018). Geneva, Switzerland: WHO.
    [Google Scholar]
  24. Ariey F et al., 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505: 5055.
    [Google Scholar]
  25. Amaratunga C, Witkowski B, Dek D, Try V, Khim N, Miotto O, Ménard D, Fairhurst RM, 2014. Plasmodium falciparum founder populations in western Cambodia have reduced artemisinin sensitivity in vitro. Antimicrob Agents Chemother 58: 49354937.
    [Google Scholar]
  26. Miotto O et al., 2015. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet 47: 226234.
    [Google Scholar]
  27. Takala-Harrison S et al., 2015. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in southeast Asia. J Infect Dis 211: 670679.
    [Google Scholar]
  28. Madamet M et al., 2017. Absence of association between polymorphisms in the K13 gene and the presence of Plasmodium falciparum parasites at day 3 after treatment with artemisinin derivatives in Senegal. Int J Antimicrob Agents 49: 754756.
    [Google Scholar]
  29. Ménard D et al., 2016. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med 374: 24532464.
    [Google Scholar]
  30. Ouattara A et al., 2015. Polymorphisms in the K13-propeller gene in artemisinin-susceptible Plasmodium falciparum parasites from Bougoula-Hameau and Bandiagara, Mali. Am J Trop Med Hyg 92: 12021206.
    [Google Scholar]
  31. Sutherland CJ et al., 2017. pfk13-Independent treatment failure in four imported cases of Plasmodium falciparum malaria treated with artemether-lumefantrine in the United Kingdom. Antimicrob Agents Chemother 61: e02382-16.
    [Google Scholar]
  32. Fairhurst RM, Dondorp AM, 2016. Artemisinin-Resistant Plasmodium falciparum malaria. Microbiol Spectr 4: 409429.
    [Google Scholar]
  33. Ashley EA et al., 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371: 411423.
    [Google Scholar]
  34. Mukherjee A et al., 2017. Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia. Malar J 16: 195.
    [Google Scholar]
  35. Hott A, Tucker MS, Casandra D, Sparks K, Kyle DE, 2015. Fitness of artemisinin-resistant Plasmodium falciparum in vitro. J Antimicrob Chemother 70: 27872796.
    [Google Scholar]
  36. Demas AR, Sharma AI, Wong W, Early AM, Redmond S, Bopp S, Neafsey DE, Volkman SK, Hartl DL, Wirth DF, 2018. Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility. Proc Natl Acad Sci USA 115: 1279912804.
    [Google Scholar]
  37. Dwivedi A et al., 2017. Functional analysis of Plasmodium falciparum subpopulations associated with artemisinin resistance in Cambodia. Malar J 16: 493.
    [Google Scholar]
  38. Imwong M et al., 2017. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong Subregion: a molecular epidemiology observational study. Lancet Infect Dis 17: 491497.
    [Google Scholar]
  39. Talundzic E et al., 2015. Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign. PLoS Pathog 11: e1004789.
    [Google Scholar]
  40. Kobasa T et al., 2018. Emergence and spread of kelch13 mutations associated with artemisinin resistance in Plasmodium falciparum parasites in 12 Thai provinces from 2007 to 2016. Antimicrob Agents Chemother 62: e0214117.
    [Google Scholar]
  41. WWARN K13 Genotype-Phenotype Study Group, 2019. Association of mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments-a WWARN individual patient data meta-analysis. BMC Med 17: 1.
    [Google Scholar]
  42. Heller LE, Roepe PD, 2019. Artemisinin-based antimalarial drug therapy: molecular pharmacology and evolving resistance. Trop Med Infect Dis 4: E89.
    [Google Scholar]
  43. Ross LS, Fidock DA, 2019. Elucidating mechanisms of drug-resistant Plasmodium falciparum. Cell Host Microbe 26: 3547.
    [Google Scholar]
  44. Paloque L, Ramadani AP, Mercereau-Puijalon O, Augereau JM, Benoit-Vical F, 2016. Plasmodium falciparum: multifaceted resistance to artemisinins. Malar J 15: 149.
    [Google Scholar]
  45. Menard D, Dondorp A, 2017. Antimalarial drug resistance: a threat to malaria elimination. Cold Spring Harb Perspect Med 7: a025619.
    [Google Scholar]
  46. Cheeseman IH et al., 2012. A major genome region underlying artemisinin resistance in malaria. Science 336: 7982.
    [Google Scholar]
  47. Takala-Harrison S et al., 2013. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in southeast Asia. Proc Natl Acad Sci USA 110: 240245.
    [Google Scholar]
  48. Bonnington CA, Phyo AP, Ashley EA, Imwong M, Sriprawat K, Parker DM, Proux S, White NJ, Nosten F, 2017. Plasmodium falciparum kelch 13 mutations and treatment response in patients in Hpa-Pun district, northern Kayin state, Myanmar. Malar J 16: 480.
    [Google Scholar]
  49. Ye R, 2016. Distinctive origin of artemisinin-resistant Plasmodium falciparum on the China-Myanmar border. Sci Rep 6: 20100.
    [Google Scholar]
  50. Thuy-Nhien N et al., 2017. K13 propeller mutations in Plasmodium falciparum populations in regions of malaria endemicity in Vietnam from 2009 to 2016. Antimicrob Agents Chemother 61: e0157816.
    [Google Scholar]
  51. World Health Organization, 2017. Status Report on Artemisinin Resistance and ACT Efficacy (April 2017). Geneva, Switzerland: WHO.
    [Google Scholar]
  52. Miotto O et al., 2013. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet 45: 648655.
    [Google Scholar]
  53. Inselburg J, 1985. Induction and isolation of artemisinine-resistant mutants of Plasmodium falciparum. Am J Trop Med Hyg 34: 417418.
    [Google Scholar]
  54. Chawira AN, Warhurst DC, Peters W, 1986. Qinghaosu resistance in rodent malaria. Trans R Soc Trop Med Hyg 80: 477480.
    [Google Scholar]
  55. Karbwang J, Bangchang KN, Thanavibul A, Bunnag D, Chongsuphajaisiddhi T, Harinasuta T, 1992. Comparison of oral artemether and mefloquine in acute uncomplicated falciparum malaria. Lancet 340: 12451248.
    [Google Scholar]
  56. Bunnag D, Viravan C, Looareesuwan S, Karbwang J, Harinasuta T, 1991. Clinical trial of artesunate and artemether on multidrug resistant falciparum malaria in Thailand. A preliminary report. Southeast Asian J Trop Med Public Health 22: 380385.
    [Google Scholar]
  57. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM, 2008. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359: 26192620.
    [Google Scholar]
  58. Noedl H, Socheat D, Satimai W, 2009. Artemisinin-resistant malaria in Asia. N Engl J Med 361: 540541.
    [Google Scholar]
  59. Spring MD et al., 2015. Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study. Lancet Infect Dis 15: 683691.
    [Google Scholar]
  60. Na-Bangchang K, Ruengweerayut R, Mahamad P, Ruengweerayut K, Chaijaroenkul W, 2010. Declining in efficacy of a three-day combination regimen of mefloquine-artesunate in a multi-drug resistance area along the Thai-Myanmar border. Malar J 9: 273.
    [Google Scholar]
  61. Das S, Manna S, Saha B, Hati AK, Roy S, 2018. Novel pfkelch13 gene polymorphism associates with artemisinin resistance in eastern India. Clin Infect Dis 69: 11441152.
    [Google Scholar]
  62. Das S, Saha B, Hati AK, Roy S, 2018. Evidence of artemisinin-resistant Plasmodium falciparum malaria in eastern India. N Engl J Med 379: 19621964.
    [Google Scholar]
  63. Conrad MD, Rosenthal PJ, 2019. Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis.
    [Google Scholar]
  64. Höfler W, 1980. Sulfadoxine-pyrimethamine resistant falciparum malaria from Cambodia. Dtsch Med Wochenschr 105: 350351.
    [Google Scholar]
  65. Eyles DE, Hoo CC, Warren M, Sandosham AA, 1963. Plasmodium falciparum resistant to chloroquine in Cambodia. Am J Trop Med Hyg 12: 840843.
    [Google Scholar]
  66. Chaorattanakawee S et al., 2016. Ex vivo piperaquine resistance developed rapidly in Plasmodium falciparum isolates in northern Cambodia compared to Thailand. Malar J 15: 519.
    [Google Scholar]
  67. Amaratunga C et al., 2016. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis 16: 357365.
    [Google Scholar]
  68. Na-Bangchang K, Muhamad P, Ruaengweerayut R, Chaijaroenkul W, Karbwang J, 2013. Identification of resistance of Plasmodium falciparum to artesunate-mefloquine combination in an area along the Thai-Myanmar border: integration of clinico-parasitological response, systemic drug exposure, and in vitro parasite sensitivity. Malar J 12: 263.
    [Google Scholar]
  69. Vijaykadga S, Rojanawatsirivej C, Cholpol S, Phoungmanee D, Nakavej A, Wongsrichanalai C, 2006. In vivo sensitivity monitoring of mefloquine monotherapy and artesunate-mefloquine combinations for the treatment of uncomplicated falciparum malaria in Thailand in 2003. Trop Med Int Health 11: 211219.
    [Google Scholar]
  70. Phyo AP et al., 2012. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379: 19601966.
    [Google Scholar]
  71. Hoglund RM, Ruengweerayut R, Na-Bangchang K, 2018. Population pharmacokinetics of mefloquine given as a 3-day artesunate-mefloquine in patients with acute uncomplicated Plasmodium falciparum malaria in a multidrug-resistant area along the Thai-Myanmar border. Malar J 17: 322.
    [Google Scholar]
  72. Tyner SD et al., 2012. Ex vivo drug sensitivity profiles of Plasmodium falciparum field isolates from Cambodia and Thailand, 2005 to 2010, determined by a histidine-rich protein-2 assay. Malar J 11: 198.
    [Google Scholar]
  73. Denis MB et al., 2006. Efficacy of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in northwest Cambodia. Trop Med Int Health. 11: 18001807.
    [Google Scholar]
  74. Uhlemann AC, McGready R, Ashley EA, Brockman A, Singhasivanon P, Krishna S, White NJ, Nosten F, Price RN, 2007. Intrahost selection of Plasmodium falciparum pfmdr1 alleles after antimalarial treatment on the northwestern border of Thailand. J Infect Dis 195: 134141.
    [Google Scholar]
  75. Song J et al., 2011. Randomized trials of artemisinin-piperaquine, dihydroartemisinin-piperaquine phosphate and artemether-lumefantrine for the treatment of multi-drug resistant falciparum malaria in Cambodia-Thailand border area. Malar J 10: 231.
    [Google Scholar]
  76. Nyunt MH et al., 2017. Clinical and molecular surveillance of artemisinin resistant falciparum malaria in Myanmar (2009–2013). Malar J 16: 333.
    [Google Scholar]
  77. Tun KM et al., 2018. Effectiveness and safety of 3 and 5 day courses of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in an area of emerging artemisinin resistance in Myanmar. Malar J 17: 258.
    [Google Scholar]
  78. Tun KM et al., 2016. Parasite clearance rates in upper Myanmar indicate a distinctive artemisinin resistance phenotype: a therapeutic efficacy study. Malar J 15: 185.
    [Google Scholar]
  79. Stohrer JM et al., 2004. Therapeutic efficacy of artemether-lumefantrine and artesunate-mefloquine for treatment of uncomplicated Plasmodium falciparum malaria in Luang Namtha province, Lao People’s Democratic Republic. Trop Med Int Health 9: 11751183.
    [Google Scholar]
  80. Amato R et al., 2018. Origins of the current outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic study. Lancet Infect Dis 18: 337345.
    [Google Scholar]
  81. Cerqueira GC et al., 2017. Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome Biol 18: 78.
    [Google Scholar]
  82. Thanh NV et al., 2017. Rapid decline in the susceptibility of Plasmodium falciparum to dihydroartemisinin-piperaquine in the south of Vietnam. Malar J 16: 27.
    [Google Scholar]
  83. Phuc BQ et al., 2017. Treatment failure of dihydroartemisinin/piperaquine for Plasmodium falciparum malaria, Vietnam. Emerg Infect Dis 23: 715717.
    [Google Scholar]
  84. Bosman P et al., 2014. Plasmodium prevalence and artemisinin-resistant falciparum malaria in Preah Vihear province, Cambodia: a cross-sectional population-based study. Malar J 13: 394.
    [Google Scholar]
  85. World Health Organization, 2018. Fact Sheet on Artemisinin Resistant Malaria (June 2018). Geneva, Switzerland: WHO.
    [Google Scholar]
  86. Naing UT, Win UH, Nwe DYY, Myint UPT, Shwe UT, 1988. The combined use of artemether, sulfadoxine and pyrimethamine in the treatment of uncomplicated falciparum malaria. Trans R Soc Trop Med Hyg 82: 530531.
    [Google Scholar]
  87. Masimirembwa CM, Phuong-dung N, Phuc BQ, Duc-Dao L, Sy ND, Sköld O, Swedberg G, 1999. Molecular epidemiology of Plasmodium falciparum antifolate resistance in Vietnam: genotyping for resistance variants of dihydropteroate synthase and dihydrofolate reductase. Int J Antimicrob Agents 12: 203211.
    [Google Scholar]
  88. Smithuis FM, Monti F, Grundl M, Oo AZ, Kyaw TT, Phe O, White NJ, 1997. Plasmodium falciparum: sensitivity in vivo to chloroquine, pyrimethamine/sulfadoxine and mefloquine in western Myanmar. Trans R Soc Trop Med Hyg 91: 468472.
    [Google Scholar]
  89. Chongsuphajaisiddhi T, Sabchareon A, 1981. Sulfadoxine-pyrimethamine resistant falciparum malaria in Thai children. Southeast Asian J Trop Med Public Health 12: 418421.
    [Google Scholar]
  90. Mayxay M, Newton PN, Khanthavong M, Tiengkham P, Phetsouvanh R, Phompida S, Brockman A, White NJ, 2003. Chloroquine versus sulfadoxine-pyrimethamine for treatment of Plasmodium falciparum malaria in Savannakhet province, Lao People’s Democratic Republic: an assessment of national antimalarial drug recommendations. Clin Infect Dis 37: 10211028.
    [Google Scholar]
  91. Mayxay M et al., 2012. No evidence for spread of Plasmodium falciparum artemisinin resistance to Savannakhet province, southern Laos. Am J Trop Med Hyg 86: 403408.
    [Google Scholar]
  92. Thriemer K et al., 2014. Delayed parasite clearance after treatment with dihydroartemisinin-piperaquine in Plasmodium falciparum malaria patients in central Vietnam. Antimicrob Agents Chemother 58: 70497055.
    [Google Scholar]
  93. Pau MC et al., 2019. Clinical impact of the two ART resistance markers, K13 gene mutations and DPC3 in Vietnam. PLoS One 14: e0214667.
    [Google Scholar]
  94. Tun KM et al., 2015. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis 15: 415421.
    [Google Scholar]
  95. Iwagami M et al., 2018. Heterogeneous distribution of k13 mutations in Plasmodium falciparum in Laos. Malar J 17: 483.
    [Google Scholar]
  96. van der Pluijm RW et al., 2019. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect Dis 19: 952961.
    [Google Scholar]
  97. Hamilton WL et al., 2019. Evolution and expansion of multidrug-resistant malaria in southeast Asia: a genomic epidemiology study. Lancet Infect Dis 19: 943951.
    [Google Scholar]
  98. Noisang C, Prosser C, Meyer W, Chemoh W, Ellis J, Sawangjaroen N, Lee R, 2019. Molecular detection of drug resistant malaria in southern Thailand. Malar J 18: 275.
    [Google Scholar]
  99. Vennerstrom JL et al., 2004. Identification of an antimalarial synthetic trioxolane drug development candidate. Nature 430: 900904.
    [Google Scholar]
  100. Charman SA et al., 2011. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc Natl Acad Sci USA 108: 44004405.
    [Google Scholar]
  101. Mott BT et al., 2015. High-throughput matrix screening identifies synergistic and antagonistic antimalarial drug combinations. Sci Rep 5: 13891.
    [Google Scholar]
  102. West African Network for Clinical Trials of Antimalarial Drugs (WANECAM), 2018. Pyronaridine-artesunate or dihydroartemisinin-piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial. Lancet 391: 13781390.
    [Google Scholar]
  103. Dini S, Zaloumis S, Cao P, Price RN, Fowkes FJI, van der Pluijm RW, McCaw JM, Simpson JA, 2018. Investigating the efficacy of triple artemisinin-based combination therapies for treating Plasmodium falciparum malaria patients using mathematical modeling. Antimicrob Agents Chemother 62: e0106818.
    [Google Scholar]
  104. Mustafa MS, Rastogi V, 2017. Artemisinin-naphthoquine combination: a directly observed treatment option in malaria. Med J Armed Forces India 73: 287289.
    [Google Scholar]
  105. Phyo AP, Jittamala P, Nosten FH, Pukrittayakamee S, Imwong M, White NJ, Duparc S, Macintyre F, Baker M, Möhrle JJ, 2016. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial. Lancet Infect Dis 16: 6169.
    [Google Scholar]
  106. Valecha N et al., 2012. Arterolane maleate plus piperaquine phosphate for treatment of uncomplicated Plasmodium falciparum malaria: a comparative, multicenter, randomized clinical trial. Clin Infect Dis 55: 663671.
    [Google Scholar]
  107. Toure OA et al., 2017. Assessment of efficacy and safety of arterolane maleate-piperaquine phosphate dispersible tablets in comparison with artemether-lumefantrine dispersible tablets in pediatric patients with acute uncomplicated Plasmodium falciparum malaria: a phase 3, randomized, multicenter trial in India and Africa. Clin Infect Dis 65: 17111720.
    [Google Scholar]
  108. Siriwardana A, Iyengar K, Roepe PD, 2016. Endoperoxide drug cross-resistance patterns for Plasmodium falciparum exhibiting an artemisinin delayed-clearance phenotype. Antimicrob Agents Chemother 60: 69526956.
    [Google Scholar]
  109. Phillips MA et al., 2015. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci Transl Med 7: 296ra111.
    [Google Scholar]
  110. White NJ et al., 2014. Spiroindolone KAE609 for falciparum and vivax malaria. N Engl J Med 371: 403410.
    [Google Scholar]
  111. Kuhen KL et al., 2014. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission. Antimicrob Agents Chemother 58: 50605067.
    [Google Scholar]
  112. Younis Y et al., 2012. 3,5-Diaryl-2-aminopyridines as a novel class of orally active antimalarials demonstrating single dose cure in mice and clinical candidate potential. J Med Chem 55: 34793487.
    [Google Scholar]
  113. Paquet T et al., 2017. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci Transl Med 9: eaad9735.
    [Google Scholar]
  114. Koita OA et al., 2017. AQ-13, an investigational antimalarial, versus artemether plus lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria: a randomised, phase 2, non-inferiority clinical trial. Lancet Infect Dis 17: 12661275.
    [Google Scholar]
  115. Burrows JN, Duparc S, Gutteridge WE, Hooft van Huijsduijnen R, Kaszubska W, Macintyre F, Mazzuri S, Möhrle JJ, Wells TNC, 2017. New developments in anti-malarial target candidate and product profiles. Malar J 16: 26.
    [Google Scholar]
  116. ClinicalTrialsgov, 2015. A Study by the Tracking Resistance to Artemisinin Collaboration (TRAC) (TRACII). ClinicalTrialsgov Identifier: NCT02453308.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0379
Loading
/content/journals/10.4269/ajtmh.19-0379
Loading

Data & Media loading...

  • Received : 15 May 2019
  • Accepted : 06 Sep 2019
  • Published online : 21 Oct 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error