1921
Volume 101, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The Asian tiger mosquito, , transmits several arboviruses of public health importance, including chikungunya and dengue. Since its introduction to the United States in 1985, the species has invaded more than 40 states, including temperate areas not previously at risk of -transmitted arboviruses. Mathematical models incorporate climatic variables in predictions of site-specific abundances to identify human populations at risk of disease. However, these models rely on coarse resolutions of environmental data that may not accurately represent the climatic profile experienced by mosquitoes in the field, particularly in climatically heterogeneous urban areas. In this study, we pair field surveys of larval and adult mosquitoes with site-specific microclimate data across a range of land use types to investigate the relationships between microclimate, density of larval habitat, and adult mosquito abundance and determine whether these relationships change across an urban gradient. We find no evidence for a difference in larval habitat density or adult abundance between rural, suburban, and urban land classes. Adult abundance increases with increasing larval habitat density, which itself is dependent on microclimate. Adult abundance is strongly explained by microclimate variables, demonstrating that theoretically derived, laboratory-parameterized relationships in ectotherm physiology apply to the field. Our results support the continued use of temperature-dependent models to predict abundance in urban areas.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.19-0220
2019-06-10
2019-08-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/101/2/tpmd190220.html?itemId=/content/journals/10.4269/ajtmh.19-0220&mimeType=html&fmt=ahah

References

  1. Moore CG, , 1999. Aedes albopictus in the United States: current status and prospects for further spread. J Am Mosq Control Assoc 15: 221227. [Google Scholar]
  2. Sprenger D, Wuithiranyagool T, , 1986. The discovery and distribution of Aedes albopictus in Harris County, Texas. J Am Mosq Control Assoc 2: 217219. [Google Scholar]
  3. Bara JJ, Parker AT, Muturi EJ, , 2016. Comparative susceptibility of Ochlerotatus japonicus, Ochlerotatus triseriatus, Aedes albopictus, and Aedes aegypti (Diptera: culicidae) to La Crosse virus. J Med Entomol 53: 14151421. [Google Scholar]
  4. Paupy C, Ollomo B, Kamgang B, Moutailler S, Rousset D, Demanou M, Hervé JP, Leroy E, Simard F, , 2010. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of dengue and chikungunya in central Africa. Vector Borne Zoonotic Dis 10: 259266. [Google Scholar]
  5. Ibanez-Bernal S, Briseno B, Mutedbi JP, Argot E, Rodriguez G, Martinez-Campos C, Paz R, de la Fuente-San Roman P, Tapia-Conyer R, Flisser A, , 1997. First record in America of Aedes albopictus naturally infected with dengue virus during the 1995 outbreak at Reynosa, Mexico. Med Vet Entomol 11: 305309. [Google Scholar]
  6. Weaver SC, Forrester NL, . 2015. Chikungunya: evolutionary history and recent epidemic spread. Antiviral Res 120: 3239. [Google Scholar]
  7. Hahn MB, Eisen RJ, Eisen L, Boegler KA, Moore CG, McAllister J, Savage HM, Mutedbi JP, , 2016. Reported distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995–2016 (Diptera: Culicidae). J Med Entomol 53: 11691175. [Google Scholar]
  8. Ogden NH, Milka R, Caminade C, Gachon P, , 2014. Recent and projected future climatic suitability of North America for the Asian tiger mosquito Aedes albopictus. Parasit Vectors 7: 532. [Google Scholar]
  9. Kraemer MUG, 2019. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol 4: 854863. [Google Scholar]
  10. Armstrong PM, Andreadis TG, Shepard JJ, Thomas MC, , 2017. Northern range expansion of the Asian tiger mosquito (Aedes albopictus): analysis of mosquito data from Connecticut, USA. PLoS Negl Trop Dis 11: e0005623. [Google Scholar]
  11. Shragai T, Harrington LC, . 2019. Aedes albopictus (Diptera: culicidae) on an invasive edge: abundance, spatial distribution, and habitat usage of larvae and pupae across urban and socioeconomic environmental gradients. J Med Entomol 56: 472482. [Google Scholar]
  12. Rezza G, 2007. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370: 18401846. [Google Scholar]
  13. Vega-Rua A, Zouache K, Caro V, Diancourt L, Delaunay P, Grandadam M, Failloux AB, , 2013. High efficiency of temperate Aedes albopictus to transmit chikungunya and dengue viruses in the southeast of France. PLoS One 8: e59716. [Google Scholar]
  14. Delatte H, Gimonneau G, Triboire A, Fontenille D, , 2009. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J Med Entomol 46: 3341. [Google Scholar]
  15. Alto BW, Juliano SA, . 2001. Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J Med Entomol 38: 548556. [Google Scholar]
  16. Farjana T, Tuno N, Higa Y, , 2011. Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus. Med Vet Entomol 26: 210217. [Google Scholar]
  17. Mordecai EA, 2017. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl Trop Dis 11: e0005568. [Google Scholar]
  18. Kearney M, Porter WP, Williams C, Ritchie S, Hoffmann AA, , 2009. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct Ecol 23: 528538. [Google Scholar]
  19. Focks DA, Haile DG, Daniels E, Mount GA, , 1993. Dynamic life table model for Aedes aegypti (Diptera: culicidae): analysis of the literature and model development. J Med Entomol 30: 10031017. [Google Scholar]
  20. Kraemer MUG, 2015. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4: e08347. [Google Scholar]
  21. Rochlin I, Ninivaggi DV, Hutchinson ML, Farajollahi A, , 2013. Climate change and range expansion of the asian tiger mosquito (Aedes albopictus) in Northeastern USA: implications for public health practitioners. PLoS One 8: e60874-9. [Google Scholar]
  22. Benedict MQ, Levine RS, Hawley WA, Lounibos LP, , 2007. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector borne Zoonotic Dis 7: 7685. [Google Scholar]
  23. Cator LJ, Thomas S, Paaijmans KP, Ravishankaran S, Justin JA, Mathai MT, Read AF, Thomas MB, Eapen A, , 2013. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India. Malar J 12: 84. [Google Scholar]
  24. Kumar G, Pande V, Pasi S, Ojha VP, Dhiman RC, , 2018. Air versus water temperature of aquatic habitats in Delhi: implications for transmission dynamics of Aedes aegypti. Geospat Health 13: 707. [Google Scholar]
  25. Scott AA, 2017. Temperature and heat in informal settlements in Nairobi. PLoS One 12: e0187300. [Google Scholar]
  26. Li Y, Kamara F, Zhou G, Puthiyakunnon S, Li C, Liu Y, Zhou Y, Yao L, Yan G, Chen X-G, , 2014. Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis 8: e3301. [Google Scholar]
  27. Murdock CC, Evans MV, McClanahan TD, Miazgowicz KL, Tesla B, , 2017. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Negl Trop Dis 11: e0005640. [Google Scholar]
  28. Bartlett-Healy K, 2012. Larval mosquito habitat utilization and community dynamics of Aedes albopictus and Aedes japonicus (Diptera: Culicidae). J Med Entomol 49: 813824. [Google Scholar]
  29. Medeiros-Sousa AR, Ceretti-Júnior W, de Carvalho GC, Nardi MS, Araujo AB, Vendrami DP, Marrelli MT, , 2015. Diversity and abundance of mosquitoes (Diptera: Culicidae) in an urban park: larval habitats and temporal variation. Acta Trop 150: 200209. [Google Scholar]
  30. McClure KM, Lawrence C, Kilpatrick AM, , 2018. Land use and larval habitat increase Aedes albopictus (Diptera: Culicidae) and Culex quinquefasciatus (Diptera: Culicidae) abundance in lowland Hawaii. J Med Entomol 55: 15091516. [Google Scholar]
  31. Bodner D, LaDeau SL, Leisnham PT, , 2019. Relationships among immature-stage metrics and adult abundances of mosquito populations in Baltimore, MD. J Med Entomol 56: 192198. [Google Scholar]
  32. Fonseca DM, 2013. Area-wide management of Aedes albopictus. Part 2: gauging the efficacy of traditional integrated pest control measures against urban container mosquitoes. Pest Manag Sci 69: 13511361. [Google Scholar]
  33. Evans MV, Shiau JC, Solano N, Brindley MA, Drake JM, Murdock CC, , 2018. Carry-over effects of urban larval environments on the transmission potential of dengue-2 virus. Parasit Vectors 11: 426. [Google Scholar]
  34. Yuan F, Bauer ME, . 2007. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106: 375386. [Google Scholar]
  35. Darsie RF, Ward RA, , 2005. Identification and Geographical Distribution of the Mosquitos of North America, North of Mexico. Gainesville, FL: University Press of Florida. [Google Scholar]
  36. de Boor C, , 2001. A Practical Guide to Splines. New York: Springer. [Google Scholar]
  37. Hardin JW, Hilbe JM, , 2012. Generalized Linear Models and Extensions, 3rd edition. College Station, TX: Stata Press. [Google Scholar]
  38. Brooks ME, Kristensen K, van Bentehm KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Maechler M, Bolker BM, , 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9: 378400. [Google Scholar]
  39. R Core Team, 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org/. Accessed December 20, 2018.
  40. Hartig F, , 2019. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models. Available at: http://florianhartig.github.io/DHARMa/. Accessed January 18, 2019.
  41. Huey RB, Stevenson R, , 1979. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19: 357366. [Google Scholar]
  42. Little E, Biehler D, Leisnham PT, Jordan R, Wilson S, LaDeau SL, , 2017. Socio-ecological mechanisms supporting high densities of Aedes albopictus (Diptera: Culicidae) in Baltimore, MD. J Med Entomol 54: 11831192. [Google Scholar]
  43. Reiskind MH, Griffin RH, Janairo MS, Hopperstad KA, , 2017. Mosquitoes of field and forest: the scale of habitat segregation in a diverse mosquito assemblage. Med Vet Entomol 31: 4454. [Google Scholar]
  44. Johnson MF, Gómez A, Pinedo-Vasquez M, , 2008. Land use and mosquito diversity in the Peruvian Amazon. J Med Entomol 45: 10231030. [Google Scholar]
  45. Gleiser RM, Zalazar LP, , 2010. Distribution of mosquitoes in relation to urban landscape characteristics. Bull Entomol Res 100: 153158. [Google Scholar]
  46. Chaves LF, Hamer GL, Walker ED, Brown WM, Ruiz MO, Kitron UD, , 2011. Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. Ecosphere 2: 121. [Google Scholar]
  47. Zahouli JBZ, Koudou BG, Müller P, Malone D, Tano Y, Utzinger J, , 2017. Urbanization is a main driver for the larval ecology of Aedes mosquitoes in arbovirus-endemic settings in south-eastern Côte d’Ivoire. PLoS Negl Trop Dis 11: e0005751. [Google Scholar]
  48. Cox J, Grillet ME, Ramos OM, Amador M, Barrera R, , 2007. Habitat segregation of dengue vectors along an urban environmental gradient. Am J Trop Med Hyg 76: 820826. [Google Scholar]
  49. Burkett-Cadena ND, McClure CJW, Estep LK, Eubanks MD, , 2013. Hosts or habitats: what drives the spatial distribution of mosquitoes? Ecosphere 4: 116. [Google Scholar]
  50. Mukhtar MU, Han Q, Liao C, Haq F, Arslan A, Bhatti A, , 2018. Seasonal distribution and container preference ratio of the dengue fever vector (Aedes aegypti, Diptera: Culicidae) in Rawalpindi, Pakistan. J Med Entomol 55: 10111015. [Google Scholar]
  51. Leisnham PT, LaDeau SL, Juliano SA, , 2014. Spatial and temporal habitat segregation of mosquitoes in urban Florida. PLoS One 9: e91655. [Google Scholar]
  52. Mitovski T, Folkins I, von Salzen K, Sigmond M, , 2010. Temperature, relative humidity, and divergence response to high rainfall events in the tropics: observations and models. J Clim 23: 36133625. [Google Scholar]
  53. Dieng H, Rahman GMS, Abu Hassan A, Che Salmah MR, Satho T, Miake F, Boots M, Sazaly A, , 2012. The effects of simulated rainfall on immature population dynamics of Aedes albopictus and female oviposition. Int J Biometeorol 56: 113120. [Google Scholar]
  54. Roiz D, Rosà R, Arnoldi D, Rizzoli A, , 2010. Effects of temperature and rainfall on the activity and dynamics of host-seeking Aedes albopictus females in northern Italy. Vector borne Zoonotic Dis 10: 811816. [Google Scholar]
  55. Brady OJ, 2013. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit Vectors 6: 351. [Google Scholar]
  56. Hylton AR, , 1969. Studies on longevity of adult Eretmapodites chrysogaster, Aedes togoi and Aedes (Stegomyia) albopictus females (Diptera: Culicidae). J Med Entomol 6: 147149. [Google Scholar]
  57. Gu W, Regens JL, Beier JC, Novak RJ, , 2006. Source reduction of mosquito larval habitats has unexpected consequences on malaria transmission. Proc Natl Acad Sci U S A 103: 1756017563. [Google Scholar]
  58. Reisen WK, Meyer RP, Tempelis CH, Spoehel JJ, . 1990. Mosquito abundance and bionomics in residential communities in orange and Los Angeles counties, California. J Med Entomol 27: 356367. [Google Scholar]
  59. Peng S, Piao S, Ciais P, Friedlingstein P, Ottle C, Bréon FM, Nan H, Zhou L, Myneni RB, , 2012. Surface urban heat island across 419 global big cities. Environ Sci Technol 46: 696703. [Google Scholar]
  60. Schielzeth H, Nakagawa S, , 2013. Nested by design: model fitting and interpretation in a mixed model era. Methods Ecol Evol 4: 1424. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.19-0220
Loading
/content/journals/10.4269/ajtmh.19-0220
Loading

Data & Media loading...

Supplemental tables and figures

  • Received : 21 Mar 2019
  • Accepted : 30 Apr 2019
  • Published online : 10 Jun 2019

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error