1921
Volume 100, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

There is no abstract available for this article.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0973
2019-01-02
2019-03-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/2/tpmd180973.html?itemId=/content/journals/10.4269/ajtmh.18-0973&mimeType=html&fmt=ahah

References

  1. Abraham EP, Chain E, , 1940. An enzyme from bacteria able to destroy penicillin. Nature 146: 837. [Google Scholar]
  2. Hedman H, Eisenberg J, Trueba G, Berrocal V, Zhang L, , 2019. High prevalence of extended spectrum beta-lactamase CTX-M producing Escherichia coli in small-sclae poultry farming in rural Ecuador. Am J Trop Med Hyg 100: 374376. [Google Scholar]
  3. Liu YY, 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16: 161168. [Google Scholar]
  4. Kumarasamy KK, 2010. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10: 597602. [Google Scholar]
  5. Mollenkopf DF, Stull JW, Mathys DA, Bowman AS, Feicht SM, Grooters SV, Daniels JB, Wittum TE, , 2017. Carbapenemase-producing enterobacteriaceae recovered from the environment of a swine farrow-to-finish operation in the United States. Antimicrob Agents Chemother 61: e01298e01216. [Google Scholar]
  6. O’Neill J, , 2016. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations (Review on Antimicrobial Resistance, 2016). Available at: https://amr-review.org/Publications.html. Accessed December 2, 2018.
  7. Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, Goossens H, Laxminarayan R, , 2018. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci 115: E3463E3470. [Google Scholar]
  8. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R, , 2015. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci 112: 56495654. [Google Scholar]
  9. Hong S-H, Bunge J, Jeon S-O, Epstein SS, , 2006. Predicting microbial species richness. Proc Natl Acad Sci 103: 117122. [Google Scholar]
  10. Suchawan P, Thakur S, , 2017. Horizontal dissemination of antimicrobial resistance determinants in multiple Salmonella serotypes isolated from the environment of commercial swine operations after manure application. Appl Environ Microbiol 83: e01503e01517. [Google Scholar]
  11. Keelara S, Scott HSM, Morrow WM, Gebreyes WA, Correa M, Nayak R, Stefanova R, Thakur S, , 2013. Longitudinal study comparing the distribution of phenotypic and genotypic similar antimicrobial resistant Salmonella serovars between pigs and their environment in two distinct swine production systems. Appl Environ Microbiol 79: 51675178. [Google Scholar]
  12. Quintana M, Thakur S, , 2012. Phylogenetic analysis reveals common antimicrobial resistant Campylobacter coli population in antimicrobial-free (ABF) and commercial swine systems. PLoS One 7: e44662. [Google Scholar]
  13. Kempf I, Kerouanton A, Bougeard S, Nagard B, Rose V, Mourand G, Osterberg J, Denis M, Bengtsson BO, , 2017. Campylobacter coli in organic and conventional pig production in France and Sweden: prevalence and antimicrobial resistance. Front Microbiol 8: 955. [Google Scholar]
  14. Bailey MA, Taylor RM, Brar JS, Corkran SC, Velásquez C, Novoa Rama E, Oliver HF, Singh M, , 2018. Prevalence and antimicrobial resistance of Campylobacter from antibiotic-free broilers during organic and conventional processing. Poult Sci doi: 10.3382/ps/pey486. [Google Scholar]
  15. Marshall BM, Levy SB, , 2011. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24: 718733. [Google Scholar]
  16. Tao W, , 2011. Characterization of two metagenome-derived esterases that reactivate chloramphenicol by counteracting chloramphenicol acetyltransferase. J Microbiol Biotechnol 21: 12031210. [Google Scholar]
  17. Pehrsson EC, Forsberg KJ, Gibson MK, Ahmadi S, Dantas G, , 2013. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs. Front Microbiol 4: 145. [Google Scholar]
  18. Hu Y, 2016. The bacterial mobile resistome transfer network connecting the animal and human microbiomes. Appl Environ Microbiol 82: 66726681. [Google Scholar]
  19. Collignon P, Beggs JJ, Walsh TR, Gandra S, Laxminarayan R, , 2018. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet Health 2: e398e405. [Google Scholar]
  20. Tornimbene B, Eremin S, Escher M, Griskeviciene J, Manglani S, Pessoa-Silva CL, , 2018. WHO global antimicrobial resistance surveillance system early implementation 2016–17. Lancet Infect Dis 18: 241242. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0973
Loading
  • Received : 04 Dec 2018
  • Accepted : 07 Dec 2018
  • Published online : 02 Jan 2019

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error