1921
Volume 100, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

infection causes febrile illness and severe disease with multiple organ failure and death when treatment is delayed. Antipyretic treatment is standard, and inducing hypothermia has been proposed to protect the brain in cerebral malaria. Here, we investigated the temperature dependence of asexual-stage parasite development and parasite multiplication in vitro. laboratory strain TM267 was incubated for 2 hours (short exposure) or 48 hours (continuous exposure) at different temperatures (32°C, 34°C, 35°C, 38°C, 39°C, and 40°C). The starting parasite developmental stage (ring, trophozoite, or schizont) varied between experiments. The parasite multiplication rate (PMR) was reduced under both hyper- and hypothermic conditions; after continuous exposure, the mean PMR ± SD was 9.1 ± 1.2 at 37°C compared with 2.4 ± 1.8 at 32°C, 2.3 ± 0.4 at 34°C, and 0.4 ± 0.1 at 40°C ( < 0.01). Changes in PMR were not significant after 2-hour exposure at temperatures ranging from 32°C to 40°C. Morphological changes in parasite cytoplasm and nucleus could be observed after long exposure to low or high temperature. After 48-hour incubation, rosette formation (≥ 2 uninfected red blood cells bound to infected red blood cells) was decreased at 34°C or 39°C compared with that at 37°C. In conclusion, both hyper- and hypothermia reduce PMR and delay erythrocytic stage development of , subsequently reducing rosette formation.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0894
2019-05-01
2019-05-26
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/5/tpmd180894.html?itemId=/content/journals/10.4269/ajtmh.18-0894&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2016. World Malaria Report 2016. Geneva, Switzerland: WHO. Available at: http://apps.who.int/iris/bitstream/10665/252038/1/9789241511711-eng.pdf?ua=1. Accessed January 26, 2017. [Google Scholar]
  2. Schumacher RF, Spinelli E, , 2012. Malaria in children. Mediterr J Hematol Infect Dis 4: e2012073. [Google Scholar]
  3. Trampuz A, Jereb M, Muzlovic I, Prabhu RM, , 2003. Clinical review: severe malaria. Crit Care 7: 315323. [Google Scholar]
  4. World Health Organization, 2012. Management of Severe Malaria 2012. Geneva, Switzerland: WHO. Available at: http://apps.who.int/iris/bitstream/handle/10665/79317/ 9789241548526_eng.pdf?sequence=1. Accessed March 16, 2017. [Google Scholar]
  5. Brandts CH, Ndjave M, Graninger W, Kremsner PG, , 1997. Effect of paracetamol on parasite clearance time in Plasmodium falciparum malaria. Lancet 350: 704709. [Google Scholar]
  6. Plewes K, 2018. Acetaminophen as a renoprotective adjunctive treatment in patients with severe and moderately severe falciparum malaria: a randomized, controlled, open-label trial. Clin Infect Dis 67: 991999. [Google Scholar]
  7. Dondorp AM, 2005. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med 2: e204. [Google Scholar]
  8. Hendriksen IC, 2012. Diagnosing severe falciparum malaria in parasitaemic African children: a prospective evaluation of plasma PfHRP2 measurement. PLoS Med 9: e1001297. [Google Scholar]
  9. White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM, , 2014. Malaria. Lancet 383: 723735. [Google Scholar]
  10. Kingston HW, 2017. Disease severity and effective parasite multiplication rate in falciparum malaria. Open Forum Infect Dis 4: ofx169. [Google Scholar]
  11. Mayxay M, Chotivanich K, Pukrittayakamee S, Newton P, Looareesuwan S, White NJ, , 2001. Contribution of humoral immunity to the therapeutic response in falciparum malaria. Am J Trop Med Hyg 65: 918923. [Google Scholar]
  12. Chotivanich K, Udomsangpetch R, Simpson JA, Newton P, Pukrittayakamee S, Looareesuwan S, White NJ, , 2000. Parasite multiplication potential and the severity of falciparum malaria. J Infect Dis 181: 12061209. [Google Scholar]
  13. Rojas MO, Wasserman M, , 1993. Effect of low temperature on the in vitro growth of Plasmodium falciparum. J Eukaryot Microbiol 40: 149152. [Google Scholar]
  14. Rehman K, Sauerzopf U, Veletzky L, Lotsch F, Groger M, Ramharter M, , 2016. Effect of mild medical hypothermia on in vitro growth of Plasmodium falciparum and the activity of anti-malarial drugs. Malar J 15: 162. [Google Scholar]
  15. Kwiatkowski D, , 1989. Febrile temperatures can synchronize the growth of Plasmodium falciparum in vitro. J Exp Med 169: 357361. [Google Scholar]
  16. Long HY, Lell B, Dietz K, Kremsner PG, , 2001. Plasmodium falciparum: in vitro growth inhibition by febrile temperatures. Parasitol Res 87: 553555. [Google Scholar]
  17. Saiwaew S, 2017. Effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum infected erythrocytes. PLoS One 12: e0172718. [Google Scholar]
  18. Hanson J, 2012. Relative contributions of macrovascular and microvascular dysfunction to disease severity in falciparum malaria. J Infect Dis 206: 571579. [Google Scholar]
  19. Chotivanich K, Sritabal J, Udomsangpetch R, Newton P, Stepniewska KA, Ruangveerayuth R, Looareesuwan S, Roberts DJ, White NJ, , 2004. Platelet-induced autoagglutination of Plasmodium falciparum-infected red blood cells and disease severity in Thailand. J Infect Dis 189: 10521055. [Google Scholar]
  20. Udomsangpetch R, Pipitaporn B, Silamut K, Pinches R, Kyes S, Looareesuwan S, Newbold C, White NJ, , 2002. Febrile temperatures induce cytoadherence of ring-stage Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA 99: 1182511829. [Google Scholar]
  21. Trager W, Jensen JB, , 1976. Human malaria parasites in continuous culture. Science 193: 673675. [Google Scholar]
  22. Silamut K, Phu NH, Whitty C, Turner GD, Louwrier K, Mai NT, Simpson JA, Hien TT, White NJ, , 1999. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol 155: 395410. [Google Scholar]
  23. Udomsangpetch R, Wahlin B, Carlson J, Berzins K, Torii M, Aikawa M, Perlmann P, Wahlgren M, , 1989. Plasmodium falciparum-infected erythrocytes form spontaneous erythrocyte rosettes. J Exp Med 169: 18351840. [Google Scholar]
  24. Chotivanich KT, Udomsangpetch R, Pipitaporn B, Angus B, Suputtamongkol Y, Pukrittayakamee S, White NJ, , 1998. Rosetting characteristics of uninfected erythrocytes from healthy individuals and malaria patients. Ann Trop Med Parasitol 92: 4556. [Google Scholar]
  25. Clark IA, Budd AC, Alleva LM, Cowden WB, , 2006. Human malarial disease: a consequence of inflammatory cytokine release. Malar J 5: 85. [Google Scholar]
  26. Schumann RR, , 2007. Malarial fever: hemozoin is involved but toll-free. Proc Natl Acad Sci USA 104: 17431744. [Google Scholar]
  27. Parroche P, 2007. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to toll-like receptor 9. Proc Natl Acad Sci USA 104: 19191924. [Google Scholar]
  28. Hasday JD, Bannerman D, Sakarya S, Cross AS, Singh IS, Howard D, Drysdale BE, Goldblum SE, , 2001. Exposure to febrile temperature modifies endothelial cell response to tumor necrosis factor-alpha. J Appl Physiol (1985) 90: 9098. [Google Scholar]
  29. Toure-Balde A, Sarthou JL, Aribot G, Michel P, Trape JF, Rogier C, Roussilhon C, , 1996. Plasmodium falciparum induces apoptosis in human mononuclear cells. Infect Immun 64: 744750. [Google Scholar]
  30. Joshi B, Biswas S, Sharma YD, , 1992. Effect of heat-shock on Plasmodium falciparum viability, growth and expression of the heat-shock protein 'PFHSP70-I' gene. FEBS Lett 312: 9194. [Google Scholar]
  31. Pavithra SR, Banumathy G, Joy O, Singh V, Tatu U, , 2004. Recurrent fever promotes Plasmodium falciparum development in human erythrocytes. J Biol Chem 279: 4669246699. [Google Scholar]
  32. Ramdhave AS, Patel D, Ramya I, Nandave M, Kharkar PS, , 2013. Targeting heat shock protein 90 for malaria. Mini Rev Med Chem 13: 19031920. [Google Scholar]
  33. Wattanakul T, 2016. Pharmacokinetic properties of intramuscular versus oral syrup paracetamol in Plasmodium falciparum malaria. Malar J 15: 244. [Google Scholar]
  34. Rowe JA, Obiero J, Marsh K, Raza A, , 2002. Short report: positive correlation between rosetting and parasitemia in Plasmodium falciparum clinical isolates. Am J Trop Med Hyg 66: 458460. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0894
Loading
/content/journals/10.4269/ajtmh.18-0894
Loading

Data & Media loading...

  • Received : 08 Nov 2018
  • Accepted : 10 Jan 2019
  • Published online : 01 May 2019

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error