1921
Volume 101, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Faced with the reemergence of yellow fever (YF) in the metropolitan region of São Paulo, Brazil, we developed a retrospective study to describe the cases of YF attended at the Institute of Infectology Emilio Ribas from January to March 2018 and analyze the factors associated with death, from the information obtained in the hospital epidemiological investigation. A total of 72 cases of sylvatic YF were confirmed, with 21 deaths (29.2% lethality rate). Cases were concentrated in males (80.6%) and in the age group of 30 to 59 years (56.9%). Two logistic regression models were performed, with continuous variables adjusted for the time between onset of symptoms and hospitalization. The first model indicated age (odds ratios [OR]: 1.038; CI 95%: 1.008–1.212), aspartate aminotransferase (AST) (OR: 1.038; CI 95%: 1.005–1.072), and creatinine (OR: 2.343; CI 95%: 1.205–4.553) were independent factors associated with mortality. The second model indicated age (OR: 1.136; CI 95%: 1.013–1.275), alanine aminotransferase (ALT) (OR: 1.118; CI 95%: 1.018–1.228), and creatinine (OR: 2.835; CI 95%: 1.352–5,941). The risk of death in the model with continuous variables was calculated from the increase of 1 year (age), 1 mg/dL (creatinine), and 100 U/L for AST and ALT. Another logistic regression analysis with dichotomous variables indicated AST > 1,841 IU/L (OR: 12.92; CI 95%: 1.50–111.37) and creatinine > 1.2 mg/dL (OR: 81.47; CI 95%: 11.33–585.71) as independent factors associated with death. These results may contribute to the appropriate clinical management of patients with YF in health-care services and improve the response to outbreaks and public health emergencies.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0882
2019-05-28
2020-05-31
Loading full text...

Full text loading...

/deliver/fulltext/14761645/101/1/tpmd180882.html?itemId=/content/journals/10.4269/ajtmh.18-0882&mimeType=html&fmt=ahah

References

  1. Vasconcelos PFC, 2003. Febre amarela. Rev Soc Bras Med Trop 36: 275293.
    [Google Scholar]
  2. World Health Organization, 2016. Situation Report—Yellow Fever, 28 October 2016. Geneva, Switzerland: WHO. Available at: http://apps.who.int/iris/bitstream/10665/250661/1/yellowfeversitrep28Oct16-eng.pdf?ua=1. Accessed July 15, 2018.
    [Google Scholar]
  3. Secretariat of Health Surveillance, Ministry of Health, Brazil, 2017. General Coordination of Epidemiology Development in Services. Health Surveillance Guide: Single Volume, 2nd edition. Brasília, Brazil. Available at: http://portalarquivos.saude.gov.br/images/pdf/2017/outubro/06/Volume-Unico-2017.pdf. Accessed July 20, 2018.
    [Google Scholar]
  4. Secretariat of Health Surveillance, Ministry of Health, Brazil, 2017. Epidemiological Situation of Yellow Fever. Brasília, Brazil. Available at: http://portalms.saude.gov.br/saude-de-a-z/febre-amarela-sintomas-transmissao-e-prevencao/situacao-epidemiologica-dados. Accessed July 22, 2018.
    [Google Scholar]
  5. Mascheretti M et al., 2013. Yellow fever: reemerging in the state of Sao Paulo, Brazil, 2009. Rev Saúde Pública 47: 19.
    [Google Scholar]
  6. Secretariat of Health Surveillance, Ministry of Health, Brazil, 2017. Emergency Operations Center in Public Health on Yellow Fever—Report 43. Brasília, Brazil. Available at: http://portalarquivos.saude.gov.br/images/pdf/2017/junho/02/COES-FEBRE-AMARELA---INFORME-43---Atualiza----o-em-31maio2017.pdf. Accessed July 25, 2018.
    [Google Scholar]
  7. Secretariat of Health Surveillance, Ministry of Health, Brazil, 2018. Emergency Operations Center in Public Health on Yellow Fever—Report 26. Brasília, Brazil. Available at: http://portalarquivos2.saude.gov.br/images/pdf/2018/maio/18/Informe-FA-26.pdf. Accessed July 26, 2018.
    [Google Scholar]
  8. Monath TP et al., 1980. Yellow fever in the Gambia, 1978–1979: epidemiologic aspects with observations on the occurrence of orungo virus infections. Am J Trop Med Hyg 29: 912928.
    [Google Scholar]
  9. Vasconcelos PF, Rodrigues SG, Degallier N, Moraes MA, da Rosa JF, da Rosa ES, Mondet B, Barros VL, da Rosa AP, 1997. An epidemic of sylvatic yellow fever in the southeast region of Maranhao State, Brazil, 1993–1994: epidemiologic and entomologic findings. Am J Trop Med Hyg 57: 132137.
    [Google Scholar]
  10. Domingo C, Patel P, Yillah J, Weidmann M, Méndez JA, Nakouné ER, Niedriga M, 2012. Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories. J Clin Microbiol 50: 40544060.
    [Google Scholar]
  11. Bae HG, Nitsche A, Teichmann A, Biel SS, Niedrig M, 2003. Detection of yellow fever virus: a comparison of quantitative real-time PCR and plaque assay. J Virol Methods 110: 185191.
    [Google Scholar]
  12. Secretary of State for Health of Minas Gerais, 2018. Flowchart for Yellow Fever Care. Minas Gerais, Brazil. Available at: http://www.saude.mg.gov.br/images/documentos/Fluxograma%20de%20Atendimento%20-%20Febre%20Amarela%20V02_03_2018.pdf. Accessed July 29, 2018.
    [Google Scholar]
  13. Sanchez OS, 2003. O processo de ocupação em áreas de proteção aos mananciais: conflito com a lei e realidade social na Região Metroplitana de São Paulo. Martins RC, Valencio NFLS, eds. Uso e Gestão dos Recursos Hídricos no Brasil. São Carlos, Brazil: RiMa, 293. Available at: http://www.teses.usp.br/teses/disponiveis/18/18139/tde-17112016-120909/publico/Dissert_Sanchez_PatriciaS_corrigido.pdf. Accessed July 20, 2018.
    [Google Scholar]
  14. Costa ZGA, Romano APM, Elkoury ANM, Flannery B, 2011. Evolução histórica da vigilância epidemiológica e do controle da febre amarela no Brasil. Rev Pan-Amaz Saude 2: 1126.
    [Google Scholar]
  15. de Almeida MAB, dos Santos E, Cardoso JC, Silva LG, Rabelo RM, Bicca-Marques JC, 2018. Predicting yellow fever through species distribution modeling of virus, vector, and monkeys. EcoHealth 16: 95108.
    [Google Scholar]
  16. Faria NR et al., 2018. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science 361: 894899.
    [Google Scholar]
  17. Tuboi SH, Costa ZGA, Vasconcelos PFC, Hatch D, 2007. Clinical and epidemiological characteristics of yellow fever in Brazil: analysis of reported cases 1998–2002. Trans R Soc Trop Med Hyg 101: 169175.
    [Google Scholar]
  18. Monath TP et al., 2002. Comparative safety and immunogenicity of two yellow fever 17D vaccines (ARILVAX and YF-VAX) in a phase III multicenter, double-blind clinical trial. Am J Trop Med Hyg 66: 533541.
    [Google Scholar]
  19. Camacho LAB, Freire MS, Leal MLF, de Aguiar SG, do Nascimento JP, Iguchi T, Lozana JA, Farias RHG; Collaborative Group for the Study of Yellow Fever Vaccines, 2004. Immunogenicity of WHO-17D and Brazilian 17DD yellow fever vaccines: a randomized trial. Rev Saúde Pública 38: 671678.
    [Google Scholar]
  20. Amanna IJ, Slifka MK, 2016. Questions regarding the safety and duration of immunity following live yellow fever vaccination. Expert Rev Vaccines 15: 15191533.
    [Google Scholar]
  21. Monath TP, Vasconcelos PFC, 2015. Yellow fever. J Clin Virol 64: 160173.
    [Google Scholar]
  22. Monath TP, Gershman M, Staples JE, Barrett ADT, 2013. Yellow fever vaccine. Plotkin SA, Orenstein WA, Offitt PA, eds. Vaccines, 6th edition. Edinburgh, Scotland: Elsevier/Saunders, 870968.
    [Google Scholar]
  23. Tesh RB, Guzman H, da Rosa AP, Vasconcelos PFC, Dias LB, Bunnel JE, Zhang H, Xiao SY, 2001. Experimental yellow fever virus infection in the golden hamster (Mesocricetus auratus). I. Virologic, biochemical and immunologic studies. J Infect Dis 183: 14311436.
    [Google Scholar]
  24. Moraes GH, Duarte EF, Duarte EC, 2013. Determinants of mortality from severe dengue in Brazil: a population-based case-control study. Am J Trop Med Hyg 88: 670676.
    [Google Scholar]
  25. Hanson H, 1929. Observations on the age and sex incidence of deaths and recoveries in the yellow fever epidemic in the department of Lambayeque, Peru, in 1921. Am J Trop Med 9: 233239.
    [Google Scholar]
  26. Oudart JL, Rey M, 1970. Proteinuria, proteinaemia, and serumtransaminase activity in 23 confirmed cases of yellow fever [article in French]. Bull World Health Organ. 42: 95102.
    [Google Scholar]
  27. Chen Z et al., 2016. A fatal yellow fever virus infection in China: descriptions and lessons. Emerg Microbes Infect 5: 18.
    [Google Scholar]
  28. Quaresma JAS, Barros VLRS, Pagliari C, Fernandes ER Jr., Andrade HF, Vasconcelos PFC, Duarte MI, 2007. Hepatocyte lesions and cellular immune response in yellow fever infection. Trans R Soc Trop Med Hyg 101: 161168.
    [Google Scholar]
  29. Hamer DH et al., 2018. Fatal yellow fever in travelers to Brazil, 2018. MMWR Morb Mortal Wkly Rep 67: 340341.
    [Google Scholar]
  30. Johansson MA, Vasconcelos PFC, Staples JE, 2014. The whole iceberg: estimating the incidence of yellow fever virus infection from the number of severe cases. Trans R Soc Trop Med Hyg 108: 482487.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0882
Loading
/content/journals/10.4269/ajtmh.18-0882
Loading

Data & Media loading...

  • Received : 03 Nov 2018
  • Accepted : 10 Apr 2019
  • Published online : 28 May 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error