1921
Volume 100, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Surface waters are an unappreciated reservoir of antimicrobial resistance (AMR). Poor sanitation brings different species of environmental bacteria into contact, facilitating horizontal gene transfer. To investigate the role of surface waters as potential reservoirs of AMR, we studied the point prevalence of fecal contamination, AMR genes, and Enterobacteriaceae in an urban lake and rural river system in Northeast Brazil in comparison with a lake and sewer system in Northeast Ohio in the United States. Surface water samples were examined for evidence of human fecal contamination using microbial source tracking and screened for plasmid-mediated fluoroquinolone resistance and carbapenemase genes. Enterobacteriaceae were detected using selective agar followed by antimicrobial susceptibility testing and detection of AMR genes by microarray, and classified by repetitive sequence–based polymerase chain reaction and multilocus sequence typing. Concentrations of human fecal bacteria in the Brazilian urban lake and sewage in Northeast Ohio were similarly high. Filtered water samples from the Brazilian urban lake, however, showed the presence of , , , , and , whereas only was identified in raw sewage from Northeast Ohio. From the Brazilian urban lake, 85% of the Enterobacteriaceae ( = 40) cultured were resistant to at least one clinically important antibiotic, including ST131 harboring the extended-spectrum beta-lactamase CTX-M. Although two isolates demonstrated polymyxin resistance, was not detected. Our findings indicate that surface waters in an urban Brazilian site can serve as an environmental reservoir of AMR and that improving wastewater treatment and sanitation generally may ameliorate AMR dissemination.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0726
2019-04-15
2020-11-25
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/6/tpmd180726.html?itemId=/content/journals/10.4269/ajtmh.18-0726&mimeType=html&fmt=ahah

References

  1. Woolhouse MEJ, Ward MJ, 2013. Microbiology. Sources of antimicrobial resistance. Science 341: 14601461.
    [Google Scholar]
  2. Vaz-Moreira I, Nunes OC, Manaia CM, 2014. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol Rev 38: 761778.
    [Google Scholar]
  3. Szekeres E, Chiriac CM, Baricz A, Szőke-Nagy T, Lung I, Soran M-L, Rudi K, Dragos N, Coman C, 2018. Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. Environ Pollut 236: 734744.
    [Google Scholar]
  4. Woerther P-L, Burdet C, Chachaty E, Andremont A, 2013. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev 26: 744758.
    [Google Scholar]
  5. Huijbers PM, Blaak H, de Jong MC, Graat EA, Vandenbroucke-Grauls CM, de Roda Husman AM, 2015. Role of the environment in the transmission of antimicrobial resistance to humans: a review. Environ Sci Technol 49: 1199312004.
    [Google Scholar]
  6. Berglund B, 2015. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidemiol 5: 28564.
    [Google Scholar]
  7. Arnold KE, Williams NJ, Bennett M, 2016. “Disperse abroad in the land”: the role of wildlife in the dissemination of antimicrobial resistance. Biol Lett 12: 201601378.
    [Google Scholar]
  8. Nellums LB, Thompson H, Holmes A, Castro-Sánchez E, Otter JA, Norredam M, Friedland JS, Hargreaves S, 2018. Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis. Lancet Infect Dis 18: 796811.
    [Google Scholar]
  9. Arcilla MS et al., 2017. Import and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study. Lancet Infect Dis 17: 7885.
    [Google Scholar]
  10. Chan HL, Poon LM, Chan SG, Teo JW, 2011. The perils of medical tourism: NDM-1-positive Escherichia coli causing febrile neutropenia in a medical tourist. Singapore Med J 52: 299302.
    [Google Scholar]
  11. Baker S, 2015. Infectious disease. A return to the pre-antimicrobial era? Science 347: 10641066.
    [Google Scholar]
  12. Fletcher S, 2015. Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ Health Prev Med 20: 243252.
    [Google Scholar]
  13. Pruden A, 2014. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Environ Sci Technol 48: 514.
    [Google Scholar]
  14. World Health Organization, 2017. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery and Development of New Antibiotics. Available at: https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/. Accessed March 21, 2018.
    [Google Scholar]
  15. Tacconelli E et al., WHO Pathogens Priority List Working Group, 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18: 318327.
    [Google Scholar]
  16. Hadjadj L, Riziki T, Zhu Y, Li J, Diene SM, Rolain J-M, 2017. Study of mcr-1 gene-mediated colistin resistance in Enterobacteriaceae isolated from humans and animals in different countries. Genes (Basel) 8: E39416.
    [Google Scholar]
  17. Barbosa L, Silva L, Reis E, Azevedo T, Costa J, Blank W, Reis M, Blanton R, 2013. Characteristics of the human host have little influence on which local Schistosoma mansoni populations are acquired. PLoS Negl Trop Dis 7: e2572.
    [Google Scholar]
  18. Blanton RE et al., 2015. The relative contribution of immigration or local increase for persistence of urban schistosomiasis in Salvador, Bahia, Brazil. PLoS Negl Trop Dis 9: e0003521.
    [Google Scholar]
  19. Okeke BC, Thomson MS, Moss EM, 2011. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant. Sci Total Environ 409: 49794985.
    [Google Scholar]
  20. Harwood VJ, Staley C, Badgley BD, Borges K, Korajkic A, 2014. Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiol Rev 38: 140.
    [Google Scholar]
  21. Ponce-Terashima R, Koskey AM, Reis MG, McLellan SL, Blanton RE, 2014. Sources and distribution of surface water fecal contamination and prevalence of schistosomiasis in a Brazilian village. PLoS Negl Trop Dis 8: e3186.
    [Google Scholar]
  22. Rojas LJ et al., 2017. Antibacterial resistance leadership group. Colistin resistance in carbapenem-resistant Klebsiella pneumoniae: laboratory detection and impact on mortality. Clin Infect Dis 64: 711718.
    [Google Scholar]
  23. Wintermans BB, Reuland EA, Wintermans RG, Bergmans AM, Kluytmans JA, 2013. The cost-effectiveness of ESBL detection: towards molecular detection methods? Clin Microbiol Infect 19: 662665.
    [Google Scholar]
  24. Endimiani A et al., 2009. Characterization of blaKPC-containing Klebsiella pneumoniae isolates detected in different institutions in the eastern USA. J Antimicrob Chemother 63: 427437.
    [Google Scholar]
  25. Pitout JD, Campbell L, Church DL, Wang PW, Guttman DS, Gregson DB, 2009. Using a commercial DiversiLab semiautomated repetitive sequence-based PCR typing technique for identification of Escherichia coli clone ST131 producing CTX-M-15. J Clin Microbiol 47: 12121215.
    [Google Scholar]
  26. Magiorakos AP et al., 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18: 268281.
    [Google Scholar]
  27. Johnson J, Clermont O, Johnston B, Clabots C, Tchesnokova V, Sokurenko E, Junka A, Maczynska B, Denamur E, 2014. Rapid and specific detection, molecular epidemiology, and experimental virulence of the O16 subgroup within Escherichia coli sequence type 131. J Clin Microbiol 52: 13581365.
    [Google Scholar]
  28. Nordmann P, Poirel L, 2013. Strategies for identification of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 68: 487489.
    [Google Scholar]
  29. Patel G, Bonomo RA, 2013. “Stormy waters ahead”: global emergence of carbapenemases. Front Microbiol 4: 48.
    [Google Scholar]
  30. Poirel L, Héritier C, Nordmann P, 2004. Chromosome-encoded ambler class D beta-lactamase of Shewanella oneidensis as a progenitor of carbapenem-hydrolyzing oxacillinase. Antimicrob Agents Chemother 48: 348351.
    [Google Scholar]
  31. Perez F et al., 2014. Extensively drug-resistant Pseudomonas aeruginosa isolates containing blaVIM-2 and elements of Salmonella genomic island 2: a new genetic resistance determinant in northeast Ohio. Antimicrob Agents Chemother 58: 59295935.
    [Google Scholar]
  32. Clegg WJ et al., 2018. Notes from the field: large cluster of Verona integron-encoded metallo-beta-lactamase–producing carbapenem-resistant Pseudomonas aeruginosa isolates colonizing residents at a skilled nursing facility—Chicago, Illinois, November 2016–March 2018. Morb Mortal Wkly Rep 67: 11301131.
    [Google Scholar]
  33. Rankin D, Caicedo L, Dotson N, Gable P, Chu A, 2018. Notes from the field: Verona integron-encoded metallo-beta-lactamase-producing Pseudomonas aeruginosa outbreak in a long-term acute care hospital–Orange County, Florida, 2017. MMWR Morb Mortal Wkly Rep 67: 611612.
    [Google Scholar]
  34. Gales AC, Castanheira M, Jones RN, Sader HS, 2012. Antimicrobial resistance among Gram-negative bacilli isolated from Latin America: results from SENTRY Antimicrobial Surveillance Program (Latin America, 2008–2010). Diagn Microbiol Infect Dis 73: 354360.
    [Google Scholar]
  35. Nicolas-Chanoine MH, Bertrand X, Madec JY, 2014. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 27: 543574.
    [Google Scholar]
  36. Ruppé E et al., 2015. High rate of acquisition but short duration of carriage of multidrug-resistant Enterobacteriaceae after travel to the tropics. Clin Infect Dis 61: 593600.
    [Google Scholar]
  37. Birgy A, Cohen R, Levy C, Bidet P, Courroux C, Benani M, Thollot F, Bingen E, 2012. Community faecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae in French children. BMC Infect Dis 12: 315.
    [Google Scholar]
  38. Hijazi SM, Fawzi MA, Ali FM, Abd El Galil KH, 2016. Prevalence and characterization of extended-spectrum beta-lactamases producing Enterobacteriaceae in healthy children and associated risk factors. Ann Clin Microbiol Antimicrob 15: 3.
    [Google Scholar]
  39. Fernandes MR, Sellera FP, Esposito F, Sabino CP, Cerdeira L, Lincopan N, 2017. Colistin-resistant mcr-1-positive Escherichia coli on public beaches, an infectious threat emerging in recreational waters. Antimicrob Agents Chemother 61: e00234-17.
    [Google Scholar]
  40. Aires CAM, da Conceição-Neto OC, Tavares E Oliveira TR, Dias CF, Montezzi LF, Picão RC, Albano RM, Asensi MD, Carvalho-Assef APD, 2017. Emergence of the plasmid-mediated mcr-1 gene in clinical KPC-2-producing Klebsiella pneumoniae sequence type 392 in Brazil. Antimicrob Agents Chemother 61: e00317-17.
    [Google Scholar]
  41. Monte DF, Mem A, Fernandes MR, Cerdeira L, Esposito F, Galvão JA, Franco BDGM, Lincopan N, Landgraf M, 2017. Chicken meat as a reservoir of colistin-resistant Escherichia coli strains carrying mcr-1 genes in South America. Antimicrob Agents Chemother 61: e02718-16.
    [Google Scholar]
  42. Gelband H, Miller-Petrie M, Pant S, Gandra S, Levinson J, Barter D, White A, Laxminarayan R, 2015. The state of the world’s antibiotics. Wound Heal South Afr 8: 3034.
    [Google Scholar]
  43. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R, 2015. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 112: 56495654.
    [Google Scholar]
  44. Maron DF, Smith TJ, Nachman KE, 2013. Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey. Glob Health 9: 48.
    [Google Scholar]
  45. Morgan DJ, Okeke IN, Laxminarayan R, Perencevich EN, Weisenberg S, 2011. Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect Dis 11: 692701.
    [Google Scholar]
  46. Viana AL, Cayô R, Avelino CC, Gales AC, Franco MC, Minarini LA, 2013. Extended-spectrum β-lactamases in Enterobacteriaceae isolated in Brazil carry distinct types of plasmid-mediated quinolone resistance genes. J Med Microbiol 62: 13261331.
    [Google Scholar]
  47. Volcão LM et al., 2018. High frequency of aac(6′)-Ib-cr gene associated with double mutations in gyrA and parC in Escherichia coli isolates from patients with urinary tract infections. J Glob Antimicrob Resist 13: 180183.
    [Google Scholar]
  48. Ferreira JC, Penha Filho RAC, Kuaye APY, Andrade LN, Berchieri Junior A, Darini ALDC, 2018. Identification and characterization of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae isolated from healthy poultry in Brazil. Infect Genet Evol 60: 6670.
    [Google Scholar]
  49. Tomova A, Ivanova L, Buschmann AH, Godfrey HP, Cabello FC, 2018. Plasmid-mediated quinolone resistance (PMQR) genes and class 1 integrons in quinolone-resistant marine bacteria and clinical isolates of Escherichia coli from an aquacultural area. Microb Ecol 75: 104112.
    [Google Scholar]
  50. Zurfluh K, Hächler H, Nüesch-Inderbinen M, Stephan R, 2013. Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae isolates from rivers and lakes in Switzerland. Appl Environ Microbiol 79: 30213026.
    [Google Scholar]
  51. Alouache S, Estepa V, Messai Y, Ruiz E, Torres C, Bakour R, 2014. Characterization of ESBLs and associated quinolone resistance in Escherichia coli and Klebsiella pneumoniae isolates from an urban wastewater treatment plant in Algeria. Microb Drug Resist 20: 3038.
    [Google Scholar]
  52. Bernhard AE, Field KG, 2000. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl Environ Microbiol 66: 45714574.
    [Google Scholar]
  53. Doyle D, Peirano G, Lascols C, Lloyd T, Church DL, Pitout JD, 2012. Laboratory detection of Enterobacteriaceae that produce carbapenemases. J Clin Microbiol 50: 38773880.
    [Google Scholar]
  54. Daoud Z, Salem Sokhn E, Masri K, Matar GM, Doron S, 2015. Escherichia coli isolated from urinary tract infections of Lebanese patients between 2005 and 2012: epidemiology and profiles of resistance. Front Med 2: 26.
    [Google Scholar]
  55. Guillard T, Cavallo JD, Cambau E, Duval V, Bajolet O, Brasme L, de Champs C, Vernet-Garnier V, 2010. Real-time PCR for fast detection of plasmid-mediated qnr genes in extended spectrum beta-lactamase producing Enterobacteriaceae. Pathol Biol (Paris) 58: 430433.
    [Google Scholar]
  56. Pereira AS, Andrade SS, Monteiro J, Sader HS, Pignatari AC, Gales AC, 2007. Evaluation of the susceptibility profiles, genetic similarity and presence of qnr gene in Escherichia coli resistant to ciprofloxacin isolated in Brazilian hospitals. Braz J Infect Dis 11: 4043.
    [Google Scholar]
  57. Yu T, Jiang X, Fu K, Liu B, Xu D, Ji S, Zhou L, 2015. Detection of extended-spectrum β-lactamase and plasmid-mediated quinolone resistance determinants in Escherichia coli isolates from retail meat in China. J Food Sci 80: M1039M1043.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0726
Loading
/content/journals/10.4269/ajtmh.18-0726
Loading

Data & Media loading...

  • Received : 05 Sep 2018
  • Accepted : 30 Dec 2018
  • Published online : 15 Apr 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error