1921
Volume 100, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The diarrheal disease “cholera” is caused by , and is primarily confined to endemic regions, mostly in Africa and Asia. It is punctuated by outbreaks and creates severe challenges to public health. The disease-causing strains are most-often members of serogroups O1 and O139. PCR-based methods allow rapid diagnosis of these pathogens, including the identification of their biotypes. However, this necessitates the selection of specific target sequences to differentiate even the closely related biotypes of . Oligonucleotides for selective amplification of small RNA (sRNA) genes that are specific to these subtypes were designed. The resulting multiplex PCR assay was validated using cultures (i.e., 19 and 22 non– isolates) and spiked stool samples. The validation using cultures and spiked stool suspensions revealed detection limits of 10–100 pg DNA per reaction and 1.5 cells/mL suspension, respectively. The multiplex PCR assay that targets sRNA genes for amplification enables the sensitive and specific detection, as well as the differentiation of —O1 classical, O1 El Tor, and O139 biotypes. Most importantly, the assay enables fast and cheaper diagnosis compared with classic culture-based methods.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.18-0525
2019-04-08
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/6/tpmd180525.html?itemId=/content/journals/10.4269/ajtmh.18-0525&mimeType=html&fmt=ahah

References

  1. Ali M, Nelson AR, Lopez AL, Sack DA, 2015. Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis 9: e0003832.
    [Google Scholar]
  2. World Health Organization, 2016. Cholera annual report 2015. Wkly Epidemiol Rec 91: 433440.
    [Google Scholar]
  3. Okpor MD, 2012. Using fuzzy classifier for cholera analysis. Intern J Sci Res 3: 314317.
    [Google Scholar]
  4. Nelson EJ, Harris JB, Morris JG Jr., Calderrwood SB, Camilli A, 2009. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol 7: 693702.
    [Google Scholar]
  5. Nair GB, 2002. Guidelines for Drinking-Water Quality. Available at: http://www.who.int/water_sanitation_health/dwq/admicrob6.pdf. Accessed March 26, 2018.
  6. Islam A et al., 2013. Indigenous Vibrio cholerae strains from a non-endemic region are pathogenic. Open Biol 3: 120181.
    [Google Scholar]
  7. Faruque SM, Mekalanos JJ, 2012. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 3: 556565.
    [Google Scholar]
  8. Nair GB, Safa A, Bhuiyan NA, Nusrin S, Murphy D, Nicol C, Valcanis M, Iddings S, Kubuabola I, Vally H, 2006. Isolation of Vibrio cholerae O1 strains similar to pre-seventh pandemic El Tor strains during an outbreak of gastrointestinal disease in an island resort in Fiji. J Med Microbiol 55: 15591562.
    [Google Scholar]
  9. Chin C-S et al., 2011. The origin of the Haitian cholera outbreak strain. N Engl J Med 364: 3342.
    [Google Scholar]
  10. Minukhin VV, Kovalenko NI, 2014. Cholera: Methodical Instructions on the Subject Microbiology, Virology and Immunology for the II and III Year English Media Students of Medical and Dentistry Faculties. Kharkiv: Kharkiv National Medical University, 20.
    [Google Scholar]
  11. Siddique AK, Cash R, 2014. Cholera outbreaks in the classical biotype era. Curr Top Microbiol Immunol 379: 116.
    [Google Scholar]
  12. Mukhopadhyay AK, Takeda Y, Balakrish NG, 2014. Cholera outbreaks in the El Tor biotype era and the impact of the new El Tor variants. Curr Top Microbiol Immunol 379: 1747.
    [Google Scholar]
  13. Vicente ACP, 2011. On the emergence of atypical Vibrio cholerae O1 El Tor & cholera epidemic. Indian J Med Res 133: 366367.
    [Google Scholar]
  14. Son MS, Megli CJ, Kovacikova G, Qadri F, Taylor RK, 2011. Characterization of Vibrio cholerae O1 El Tor biotype variant clinical isolates from Bangladesh and Haiti, including a molecular genetic analysis of virulence genes. J Clin Microbiol 49: 37393749.
    [Google Scholar]
  15. Kim EJ et al., 2014. Molecular insights into the evolutionary pathway of Vibrio cholerae O1 atypical El Tor variants. PLoS Pathog 10: e1004384.
    [Google Scholar]
  16. Udden SMN, Zahid MSH, Biswas K, Ahmad QS, Cravioto A, Nair GB, Mekalanos JJ, Faruque SM, 2008. Acquisition of classical CTX prophage from Vibrio cholerae O141 by El Tor strains aided by lytic phages and chitin-induced competence. Proc Natl Acad Sci USA 105: 1195111956.
    [Google Scholar]
  17. Keddy KH, Sooka A, Parsons MB, Njanpop-Lafourcade B-M, Fitchet K, Smith AM, 2013. Diagnosis of Vibrio cholerae O1 infection in Africa. J Infect Dis 208: S23S31.
    [Google Scholar]
  18. Griffth DC, Kelly-Hope LA, Miller MA, 2006. Review of reported cholera outbreaks worldwide, 1995–2005. Am J Trop Med Hyg 75: 973977.
    [Google Scholar]
  19. Loharikar A et al., 2013. A national cholera epidemic with high case fatality rates—Kenya 2009. J Infect Dis 208: S69S77.
    [Google Scholar]
  20. Alam A et al., 2010. Diagnostic limitations to accurate diagnosis of cholera. J Clin Microbiol 48: 39183922.
    [Google Scholar]
  21. Greenhill A, Rosewell A, Kas M, Manning L, Latorre L, Siba P, Horwood P, 2012. Improved laboratory capacity is required to respond better to future cholera outbreaks in Papua New Guinea. Western Pac Surveill Response J 3: 3032.
    [Google Scholar]
  22. George CM et al., 2014. Evaluation of enrichment method for the detection of Vibrio cholerae O1 using a rapid dipstick test in Bangladesh. Trop Med Int Health 19: 301307.
    [Google Scholar]
  23. Ontweka LN et al., 2016. Cholera rapid test with enrichment step has diagnostic performance equivalent to culture. PLoS One 11: e0168257.
    [Google Scholar]
  24. Yamasaki E, Sakamoto R, Matsumoto T, Morimatsu F, Kurazono T, Hiroi T, Nair GB, Kurazono H, 2013. Development of an immunochromatographic test strip for detection of cholera toxin. Biomed Res Int 2013: 679038.
    [Google Scholar]
  25. Zhu K, Dietrich R, Didier A, Doyscher D, Märtlbauer E, 2014. Recent developments in antibody-based assays for the detection of bacterial toxins. Toxins 6: 13251348.
    [Google Scholar]
  26. Barzamini B, Moghbeli M, Soleimani NA, 2014. Vibrio cholerae detection in water and wastewater by polymerase chain reaction assay. Int J Enteric Pathog 2: e20997.
    [Google Scholar]
  27. Kim H-J, Ryu J-O, Lee S-Y, Kim E-S, Kim H-Y, 2015. Multiplex PCR for detection of the Vibrio genus and five pathogenic Vibrio species with primer sets designed using comparative genomics. BMC Microbiol 15: 239.
    [Google Scholar]
  28. Yamazaki W, Seto K, Taguchi M, Ishibashi M, Inoue K, 2008. Sensitive and rapid detection of cholera toxin-producing Vibrio cholerae using a loop-mediated isothermal amplification. BMC Microbiol 8: 94.
    [Google Scholar]
  29. Chua AL, Elina HT, Lim BH, Yean CY, Ravichandran M, Lalitha P, 2011. Development of a dry reagent-based triplex PCR for the detection of toxigenic and non-toxigenic Vibrio cholerae. J Med Microbiol 60: 481485.
    [Google Scholar]
  30. Mehrabadi JF, Morsali P, Nejad HR, Imani Fooladi AA, 2012. Detection of toxigenic Vibrio cholerae with new multiplex PCR. J Infect Public Health 5: 263267.
    [Google Scholar]
  31. Raychoudhuri A, Mukhopadhyay AK, Ramamurthy T, Nandy RK, Takeda Y, Nair GB, 2008. Biotyping of Vibrio cholerae O1: time to redefine the scheme. Indian J Med Res 128: 695698.
    [Google Scholar]
  32. Barzelighi HM, Bakhshi B, Boustanshenas M, 2016. Genetic determinants differences between Vibrio cholerae biotypes. Infect Epidemiol Med 2: 2630.
    [Google Scholar]
  33. Ahmed SA, Sandai DA, Musa S, Hoe CH, Riadzi M, Lau KL, Tang TH, 2012. Rapid diagnosis of leptospirosis by multiplex PCR. Malays J Med Sci 19: 916.
    [Google Scholar]
  34. Tang TH, Ahmed SA, Musa M, Zainuddin ZF, 2013. Rapid detection of Mycobacterium tuberculosis in clinical samples by multiplex polymerase chain reaction (mPCR). World J Microbiol Biotechnol 29: 23892395.
    [Google Scholar]
  35. Nithya R, Ahmed SA, Hoe CH, Gopinath SC, Citartan M, Chinni SV, Lee LP, Rozhdestvensky TS, Tang TH, 2015. Non-protein coding RNA genes as the novel diagnostic markers for the discrimination of Salmonella species using PCR. PLoS One 10: e0118668.
    [Google Scholar]
  36. Tokunaga A, Yamaguchi H, Morita M, Arakawa E, Izumiya H, Watanabe H, Osawa R, 2010. Novel PCR-based genotyping method, using genomic variability between repetitive sequences of toxigenic Vibrio cholerae O1 El Tor and O139. Mol Cell Probes 24: 99103.
    [Google Scholar]
  37. Li W, Ying X, Lu Q, Chen L, 2012. Predicting sRNAs and their targets in bacteria. Genomics Proteomics Bioinformatics 10: 276284.
    [Google Scholar]
  38. Tang TH, Bachellerie JP, Rozhdestvensky T, Bortolin ML, Huber H, Drungowski M, Elge T, Brosius J, Hüttenhofer A, 2002. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci USA 99: 75367541.
    [Google Scholar]
  39. Vogel J, Bartels V, Tang TH, Churakov G, Slagter-Jäger JG, Hüttenhofer A, Wagner EGH, 2003. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucl Acids Res 31: 64356443.
    [Google Scholar]
  40. Chinni SV, Raabe CA, Zakaria R, Randau G, Hoe CH, Zemann A, Brosius J, Tang TH, Rozhdestvensky TS, 2010. Experimental identification and characterization of 97 novel npcRNA candidates in Salmonella enterica serovar Typhi. Nucl Acids Res 38: 58935908.
    [Google Scholar]
  41. Krӧger C et al., 2012. The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc Natl Acad Sci USA 109: E1277E1286.
    [Google Scholar]
  42. Raabe CA et al., 2010. A global view of the nonprotein-coding transcriptome in Plasmodium falciparum. Nucleic Acids Res 38: 608617.
    [Google Scholar]
  43. Chen XS, Rozhdestvensky TS, Collins LJ, Schmitz J, Penny D, 2007. Combined experimental and computational approach to identify non-protein-coding RNAs in the deep-branching eukayote Giardia intestinalis. Nucleic Acids Res 35: 46194628.
    [Google Scholar]
  44. Yuan G, Klämbt C, Bachellerie JP, Brosius J, Hüttenhofer A, 2003. RNomics in Drosophila melanogaster: identification of 66 candidates for novel non-messenger RNAs. Nucleic Acids Res 31: 24952507.
    [Google Scholar]
  45. Marker C, Zemann A, Terhӧrst T, Kiefmann M, Kastenmayer JP, Green P, Bachellerie JP, Brosius J, Hüttenhofer A, 2002. Experimental RNomics: identification of 140 candidates for small non-messenger RNAs in the plant Arabidopsis thaliana. Curr Biol 12: 20022013.
    [Google Scholar]
  46. Hüttenhofer A, Kiefmann M, Meier-Ewert S, O’Brien J, Lehrach H, Bachellerie JP, Brosius J, 2001. RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse. EMBO J 20: 29432953.
    [Google Scholar]
  47. Hoe CH, Raabe CA, Rozhdestvensky TS, Tang TH, 2013. Bacterial sRNAs: regulation in stress. Int J Med Microbiol 303: 217229.
    [Google Scholar]
  48. Cheah HL, Raabe CA, Lee LP, Rozhdestvensky TS, Citartan M, Ahmed SA, Tang TH, 2018. Bacterial regulatory RNAs: complexity, function, and putative drug targeting. Crit Rev Biochem Mol Biol 53: 335355.
    [Google Scholar]
  49. Papenfort K, Fӧrstner KU, Cong J-P, Sharma CM, Bassler BL, 2015. Differential RNA-seq of Vibrio cholerae identifies the VqmR small RNA as a regulator of biofilm formation. Proc Natl Acad Sci USA 1073: E766E775.
    [Google Scholar]
  50. Silveira AC, Robertson KL, Lin B, Wang Z, Vora GJ, Vasconcelos AT, Thompson FL, 2010. Identification of non-coding RNAs in environmental vibrios. Microbiology 156: 24522458.
    [Google Scholar]
  51. Bardill JP, Hammer BK, 2012. Non-coding sRNAs regulate virulence in the bacterial pathogen Vibrio cholerae. RNA Biol 9: 392401.
    [Google Scholar]
  52. Raabe CA, Hoe CH, Randau G, Brosius J, Tang TH, Rozhdestvensky TS, 2011. The rocks and shallows of deep RNA sequencing: examples in the Vibrio cholerae RNome. RNA 17: 13571366.
    [Google Scholar]
  53. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, 1990. Basic local alignment search tool. J Mol Biol 215: 403410.
    [Google Scholar]
  54. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL, 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134.
    [Google Scholar]
  55. Dalsgaard A, Serichantalergs O, Forslund A, Lin W, Mekalanos J, Mintz E, Shimada T, Wells JG, 2001. Clinical and environmental isolates of Vibrio cholerae serogroup O141 carry the CTX phage and the genes encoding the toxin-coregulated pili. J Clin Microbiol 39: 40864092.
    [Google Scholar]
  56. Onifade TM, Hutchinson R, Van Zile K, Bodager D, Baker R, Blackmore C, 2011. Toxin producing Vibrio cholerae O75 outbreak, United States, March to April 2011. Euro Surveill 16: 19870.
    [Google Scholar]
  57. Tobin-D’Angelo M et al., 2008. Severe diarrhea caused by cholera toxin-producing Vibrio cholerae serogroup O75 infections acquired in the southeastern United States. Clin Infect Dis 47: 10351040.
    [Google Scholar]
  58. Schrader C, Schielke A, Ellerbroek L, Johne R, 2012. PCR inhibitors—occurrence, properties and removal. J Appl Microbiol 113: 10141026.
    [Google Scholar]
  59. Monteiro L, Bonnemaison D, Vekris A, Petry KG, Bonnet J, Vidal R, Cabrita J, Mégraud F, 1997. Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J Clin Microbiol 35: 995998.
    [Google Scholar]
  60. Iijima Y, Asako NT, Aihara M, Hayashi K, 2004. Improvement in the detection rate of diarrhoeagenic bacteria in human stool specimens by a rapid real-time PCR assay. J Med Microbiol 53: 617622.
    [Google Scholar]
  61. Ojha SC, Yean Yean C, Ismail A, Singh KK, 2013. A pentaplex PCR assay for the detection and differentiation of Shigella species. Biomed Res Int 2013: 412370.
    [Google Scholar]
  62. Liu Y et al., 2015. A foodborne outbreak of gastroenteritis caused by Vibrio parahaemolyticus and norovirus through non-seafood vehicle. PLoS One 10: e0137848.
    [Google Scholar]
  63. Teh CSJ, Suhaili Z, Lim KT, Khamaruddin MA, Yahya F, Sajili MH, Yeo CC, Thong KL, 2012. Outbreak-associated Vibrio cholerae genotypes with identical pulsotypes, Malaysia, 2009. Emerg Infect Dis 18: 11771179.
    [Google Scholar]
  64. Iwamoto M, Ayers T, Mahon BE, Swerdlow DL, 2010. Epidemiology of seafood-associated infections in the United States. Clin Microbiol Rev 23: 399411.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.18-0525
Loading
/content/journals/10.4269/ajtmh.18-0525
Loading

Data & Media loading...

Supplemental tables and figures

  • Received : 24 Jun 2018
  • Accepted : 17 Dec 2018
  • Published online : 08 Apr 2019
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error