1921
Volume 99, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Melioidosis is a major neglected tropical disease with high mortality, caused by the Gram-negative bacterium (). Microbiological culture remains the gold standard for diagnosis, but a simpler and more readily available test such as an antibody assay is highly desirable. In this study, we conducted a serological survey of blood donors ( = 1,060) and adult melioidosis patients ( = 200) in northeast Thailand to measure the antibody response to using the indirect hemagglutination assay (IHA). We found that 38% of healthy adults (aged 17–59 years) have seropositivity (IHA titer ≥ 1:80). The seropositivity in healthy blood donors was associated with having a declared occupation of rice farmer and with residence in a nonurban area, but not with gender or age. In the melioidosis cohort, the seropositivity rate was higher in adult patients aged between 18 and 45 years (90%, 37/41) compared with those aged ≥ 45 years (68%, 108/159, = 0.004). The seropositivity rate was significantly higher in people with diabetes ( = 0.008). Seropositivity was associated with decreased mortality on univariable analysis ( = 0.005), but not on multivariable analysis when adjusted for age, diabetes status, preexisting renal disease, and neutrophil count. This study confirms the presence of high background antibodies in an endemic region and demonstrates the limitations of using IHA during acute melioidosis in this population.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0998
2018-12-05
2018-12-14
Loading full text...

Full text loading...

/deliver/fulltext/14761645/99/6/tpmd170998.html?itemId=/content/journals/10.4269/ajtmh.17-0998&mimeType=html&fmt=ahah

References

  1. Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N, Wongsuvan G, Chaisuksant S, Chetchotisakd P, Chaowagul W, Day NP, Peacock SJ, , 2010. Increasing incidence of human melioidosis in northeast Thailand. Am J Trop Med Hyg 82: 11131117. [Google Scholar]
  2. Limmathurotsakul D, 2016. Predicted global distribution of and burden of melioidosis. Nat Microbiol 1: 15. [Google Scholar]
  3. Currie BJ, Ward L, Cheng AC, , 2010. The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year Darwin prospective study. PLoS Negl Trop Dis 4: e900. [Google Scholar]
  4. Suputtamongkol Y, 1999. Risk factors for melioidosis and bacteremic melioidosis. Clin Infect Dis 29: 408413. [Google Scholar]
  5. Kanaphun P, Thirawattanasuk N, Suputtamongkol Y, Naigowit P, Dance DA, Smith MD, White NJ, , 1993. Serology and carriage of Pseudomonas pseudomallei: a prospective study in 1000 hospitalized children in northeast Thailand. J Infect Dis 167: 230233. [Google Scholar]
  6. Cheng AC, O’Brien M, Freeman K, Lum G, Currie BJ, , 2006. Indirect hemagglutination assay in patients with melioidosis in northern Australia. Am J Trop Med Hyg 74: 330334. [Google Scholar]
  7. Wuthiekanun V, Chierakul W, Langa S, Chaowagul W, Panpitpat C, Saipan P, Thoujaikong T, Day NP, Peacock SJ, , 2006. Development of antibodies to Burkholderia pseudomallei during childhood in melioidosis-endemic northeast Thailand. Am J Trop Med Hyg 74: 10741075. [Google Scholar]
  8. Wuthiekanun V, Langa S, Swaddiwudhipong W, Jedsadapanpong W, Kaengnet Y, Chierakul W, Day NP, Peacock SJ, , 2006. Short report: melioidosis in Myanmar: forgotten but not gone? Am J Trop Med Hyg 75: 945946. [Google Scholar]
  9. Charoenwong P, Lumbiganon P, Puapermpoonsiri S, , 1992. The prevalence of the indirect hemagglutination test for melioidosis in children in an endemic area. Southeast Asian J Trop Med Public Health 23: 698701. [Google Scholar]
  10. Ashdown LR, Johnson RW, Koehler JM, Cooney CA, , 1989. Enzyme-linked immunosorbent assay for the diagnosis of clinical and subclinical melioidosis. J Infect Dis 160: 253260. [Google Scholar]
  11. Harris PN, Ketheesan N, Owens L, Norton RE, , 2009. Clinical features that affect indirect-hemagglutination-assay responses to Burkholderia pseudomallei. Clin Vaccine Immunol 16: 924930. [Google Scholar]
  12. Jenjaroen K, 2015. T-cell responses are associated with survival in acute melioidosis patients. PLoS Negl Trop Dis 9: e0004152. [Google Scholar]
  13. Mahidol-Oxford Tropical Medicine Research Unit, 2011. Standard Operating Procedure (SOP) of Indirect Haemagglutination Assay (IHA) for Melioidosis. Available at: http://www.melioidosis.info/download/MICRO_SOP_IHA_ENG_v1%203_8Dec11_SDB.pdf. Accessed April 11, 2017.
  14. Alexander AD, Huxsoll DL, Warner AR, Jr. Shepler V, Dorsey A, , 1970. Serological diagnosis of human melioidosis with indirect hemagglutination and complement fixation tests. Appl Microbiol 20: 825833. [Google Scholar]
  15. Chantratita N, Wuthiekanun V, Limmathurotsakul D, Vesaratchavest M, Thanwisai A, Amornchai P, Tumapa S, Feil EJ, Day NP, Peacock SJ, , 2008. Genetic diversity and microevolution of Burkholderia pseudomallei in the environment. PLoS Negl Trop Dis 2: e182. [Google Scholar]
  16. Wikraiphat C, 2015. Colony morphology variation of Burkholderia pseudomallei is associated with antigenic variation and O-polysaccharide modification. Infect Immun 83: 21272138. [Google Scholar]
  17. Wuthiekanun V, Pheaktra N, Putchhat H, Sin L, Sen B, Kumar V, Langla S, Peacock SJ, Day NP, , 2008. Burkholderia pseudomallei antibodies in children, Cambodia. Emerg Infect Dis 14: 301303. [Google Scholar]
  18. Suttisunhakul V, Chantratita N, Wikraiphat C, Wuthiekanun V, Douglas Z, Day NP, Limmathurotsakul D, Brett PJ, Burtnick MN, , 2015. Evaluation of polysaccharide-based latex agglutination assays for the rapid detection of antibodies to Burkholderia pseudomallei. Am J Trop Med Hyg 93: 542546. [Google Scholar]
  19. Ashdown LR, Guard RW, , 1984. The prevalence of human melioidosis in northern Queensland. Am J Trop Med Hyg 33: 474478. [Google Scholar]
  20. Brett PJ, Deshazer D, Woods DE, , 1997. Characterization of Burkholderia pseudomallei and Burkholderia pseudomallei-like strains. Epidemiol Infect 118: 137148. [Google Scholar]
  21. Ngamdee W, Tandhavanant S, Wikraiphat C, Reamtong O, Wuthiekanun V, Salje J, Low DA, Peacock SJ, Chantratita N, , 2015. Competition between Burkholderia pseudomallei and B. thailandensis. BMC Microbiol 15: 56. [Google Scholar]
  22. Gilmore G, Barnes J, Ketheesan N, Norton R, , 2007. Use of antigens derived from Burkholderia pseudomallei, B. thailandensis, and B. cepacia in the indirect hemagglutination assay for melioidosis. Clin Vaccine Immunol 14: 15291531. [Google Scholar]
  23. Tiyawisutsri R, Peacock SJ, Langa S, Limmathurotsakul D, Cheng AC, Chierakul W, Chaowagul W, Day NP, Wuthiekanun V, , 2005. Antibodies from patients with melioidosis recognize Burkholderia mallei but not Burkholderia thailandensis antigens in the indirect hemagglutination assay. J Clin Microbiol 43: 48724874. [Google Scholar]
  24. Hantrakun V, 2018. Presence of B. thailandensis and B. thailandensis expressing B. pseudomallei-like capsular polysaccharide in Thailand, and their associations with serological response to B. pseudomallei. PLoS Negl Trop Dis 12: e0006193. [Google Scholar]
  25. Currie BJ, Jacups SP, Cheng AC, Fisher DA, Anstey NM, Huffam SE, Krause VL, , 2004. Melioidosis epidemiology and risk factors from a prospective whole-population study in northern Australia. Trop Med Int Health 9: 11671174. [Google Scholar]
  26. Chong Y, Ikematsu H, Yamaji K, Nishimura M, Nabeshima S, Kashiwagi S, Hayashi J, , 2005. CD27(+) (memory) B cell decrease and apoptosis-resistant CD27(−) (naive) B cell increase in aged humans: implications for age-related peripheral B cell developmental disturbances. Int Immunol 17: 383390. [Google Scholar]
  27. Kato S, Chmielewski M, Honda H, Pecoits-Filho R, Matsuo S, Yuzawa Y, Tranaeus A, Stenvinkel P, Lindholm B, , 2008. Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol 3: 15261533. [Google Scholar]
  28. Jenjaroen K, 2015. T-cell responses are associated with survival in acute melioidosis patients. PLoS Negl Trop Dis 9: e0004152. [Google Scholar]
  29. Zhai X, Qian G, Wang Y, Chen X, Lu J, Zhang Y, Huang Q, Wang Q, , 2016. Elevated B cell activation is associated with type 2 diabetes development in obese subjects. Cell Physiol Biochem 38: 12571266. [Google Scholar]
  30. Frasca D, Diaz A, Romero M, Mendez NV, Landin AM, Ryan JG, Blomberg BB, , 2013. Young and elderly patients with type 2 diabetes have optimal B cell responses to the seasonal influenza vaccine. Vaccine 31: 36033610. [Google Scholar]
  31. Koh GC, 2011. Glyburide is anti-inflammatory and associated with reduced mortality in melioidosis. Clin Infect Dis 52: 717725. [Google Scholar]
  32. Drifte G, Dunn-Siegrist I, Tissieres P, Pugin J, , 2013. Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome. Crit Care Med 41: 820832. [Google Scholar]
  33. Orr Y, Taylor JM, Bannon PG, Geczy C, Kritharides L, , 2005. Circulating CD10-/CD16low neutrophils provide a quantitative index of active bone marrow neutrophil release. Br J Haematol 131: 508519. [Google Scholar]
  34. Puga I, 2011. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol 13: 170180. [Google Scholar]
  35. Cerutti A, Puga I, Magri G, , 2013. The B cell helper side of neutrophils. J Leukoc Biol 94: 677682. [Google Scholar]
  36. Glasser L, Fiederlein RL, , 1987. Functional differentiation of normal human neutrophils. Blood 69: 937. [Google Scholar]
  37. Lichtman MA, Weed RI, , 1972. Alteration of the cell periphery during granulocyte maturation: relationship to cell function. Blood 39: 301. [Google Scholar]
  38. Wuthiekanun V, Chierakul W, Rattanalertnavee J, Langa S, Sirodom D, Wattanawaitunechai C, Winothai W, White NJ, Day N, Peacock SJ, , 2006. Serological evidence for increased human exposure to Burkholderia pseudomallei following the tsunami in southern Thailand. J Clin Microbiol 44: 239240. [Google Scholar]
  39. Diefenbach-Elstob TR, Graves PM, Burgess GW, Pelowa DB, Warner JM, , 2015. Seroepidemiology of melioidosis in children from a remote region of Papua New Guinea. Int Health 7: 332338. [Google Scholar]
  40. Armstrong PK, Anstey NM, Kelly PM, Currie BJ, Martins N, Dasari P, Krause V, , 2005. Seroprevalence of Burkholderia pseudomallei in east Timorese refugees: implications for healthcare in east Timor. Southeast Asian J Trop Med Public Health 36: 14961502. [Google Scholar]
  41. Heng BH, Goh KT, Yap EH, Loh H, Yeo M, , 1998. Epidemiological surveillance of melioidosis in Singapore. Ann Acad Med Singapore 27: 478484. [Google Scholar]
  42. Harris PN, Williams NL, Morris JL, Ketheesan N, Norton RE, , 2011. Evidence of Burkholderia pseudomallei-specific immunity in patient sera persistently nonreactive by the indirect hemagglutination assay. Clin Vaccine Immunol 18: 12881291. [Google Scholar]
  43. Johnson SA, Rozzo SJ, Cambier JC, , 2002. Aging-dependent exclusion of antigen-inexperienced cells from the peripheral B cell repertoire. J Immunol 168: 50145023. [Google Scholar]
  44. Gibson KL, Wu YC, Barnett Y, Duggan O, Vaughan R, Kondeatis E, Nilsson BO, Wikby A, Kipling D, Dunn-Walters DK, , 2009. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell 8: 1825. [Google Scholar]
  45. Castelo-Branco C, Soveral I, , 2014. The immune system and aging: a review. Gynecol Endocrinol 30: 1622. [Google Scholar]
  46. Wiersinga WJ, 2015. Clinical, environmental, and serologic surveillance studies of melioidosis in Gabon, 2012–2013. Emerg Infect Dis 21: 4047. [Google Scholar]
  47. Chaowagul W, White NJ, Dance DA, Wattanagoon Y, Naigowit P, Davis TM, Looareesuwan S, Pitakwatchara N, , 1989. Melioidosis: a major cause of community-acquired septicemia in northeastern Thailand. J Infect Dis 159: 890899. [Google Scholar]
  48. Kunakorn M, Boonma P, Khupulsup K, Petchclai B, , 1990. Enzyme-linked immunosorbent assay for immunoglobulin M specific antibody for the diagnosis of melioidosis. J Clin Microbiol 28: 12491253. [Google Scholar]
  49. Appassakij H, Silpapojakul KR, Wansit R, Pornpatkul M, , 1990. Diagnostic value of the indirect hemagglutination test for melioidosis in an endemic area. Am J Trop Med Hyg 42: 248253. [Google Scholar]
  50. Ashdown LR, , 1981. Relationship and significance of specific immunoglobulin M antibody response in clinical and subclinical melioidosis. J Clin Microbiol 14: 361364. [Google Scholar]
  51. Khupulsup K, Petchclai B, , 1986. Application of indirect hemagglutination test and indirect fluorescent antibody test for IgM antibody for diagnosis of melioidosis in Thailand. Am J Trop Med Hyg 35: 366369. [Google Scholar]
  52. Sermswan RW, Wongratanacheewin S, Anuntagool N, Sirisinha S, , 2000. Comparison of the polymerase chain reaction and serologic tests for diagnosis of septicemic melioidosis. Am J Trop Med Hyg 63: 146149. [Google Scholar]
  53. O’Brien M, Freeman K, Lum G, Cheng AC, Jacups SP, Currie BJ, , 2004. Further evaluation of a rapid diagnostic test for melioidosis in an area of endemicity. J Clin Microbiol 42: 22392240. [Google Scholar]
  54. Chantratita N, Wuthiekanun V, Thanwisai A, Limmathurotsakul D, Cheng AC, Chierakul W, Day NP, Peacock SJ, , 2007. Accuracy of enzyme-linked immunosorbent assay using crude and purified antigens for serodiagnosis of melioidosis. Clin Vaccine Immunol 14: 110113. [Google Scholar]
  55. Suttisunhakul V, Wuthiekanun V, Brett PJ, Khusmith S, Day NP, Burtnick MN, Limmathurotsakul D, Chantratita N, , 2016. Development of rapid enzyme-linked immunosorbent assays for detection of antibodies to Burkholderia pseudomallei. J Clin Microbiol 54: 12591268. [Google Scholar]
  56. Hara Y, Chin CY, Mohamed R, Puthucheary SD, Nathan S, , 2013. Multiple-antigen ELISA for melioidosis–a novel approach to the improved serodiagnosis of melioidosis. BMC Infect Dis 13: 165. [Google Scholar]
  57. Pumpuang A, Dunachie SJ, Phokrai P, Jenjaroen K, Sintiprungrat K, Boonsilp S, Brett PJ, Burtnick MN, Chantratita N, , 2017. Comparison of O-polysaccharide and hemolysin co-regulated protein as target antigens for serodiagnosis of melioidosis. PLoS Negl Trop Dis 11: e0005499. [Google Scholar]
  58. Lowe W, March JK, Bunnell AJ, O’Neill KL, Robison RA, , 2014. PCR-based methodologies used to detect and differentiate the Burkholderia pseudomallei complex: B. pseudomallei, B. mallei, and B. thailandensis. Curr Issues Mol Biol 16: 2354. [Google Scholar]
  59. Lowe CW, 2016. A quadruplex real-time PCR assay for the rapid detection and differentiation of the most relevant members of the B. pseudomallei complex: B. mallei, B. pseudomallei, and B. thailandensis. PLoS One 11: e0164006. [Google Scholar]
  60. Nandagopal B, Sankar S, Lingesan K, Appu K, Sridharan G, Gopinathan A, , 2012. Application of polymerase chain reaction to detect Burkholderia pseudomallei and Brucella species in buffy coat from patients with febrile illness among rural and peri-urban population. J Glob Infect Dis 4: 3137. [Google Scholar]
  61. Kohler C, Dunachie SJ, Muller E, Kohler A, Jenjaroen K, Teparrukkul P, Baier V, Ehricht R, Steinmetz I, , 2016. Rapid and sensitive multiplex detection of Burkholderia pseudomallei-specific antibodies in melioidosis patients based on a protein microarray approach. PLoS Negl Trop Dis 10: e0004847. [Google Scholar]
  62. Pankla R, Buddhisa S, Berry M, Blankenship DM, Bancroft GJ, Banchereau J, Lertmemongkolchai G, Chaussabel D, , 2009. Genomic transcriptional profiling identifies a candidate blood biomarker signature for the diagnosis of septicemic melioidosis. Genome Biol 10: R127. [Google Scholar]
  63. Woods KL, Boutthasavong L, NicFhogartaigh C, Lee SJ, Davong V, AuCoin DP, Dance DAB, , 2018. Evaluation of a rapid diagnostic test for the detection of Burkholderia pseudomallei in the Lao People’s Democratic Republic. J Clin Microbiol 56: e02002e02017. [Google Scholar]
  64. Peeters M, Chung P, Lin H, Mortelmans K, Phe C, San C, Kuijpers LMF, Teav S, Phe T, Jacobs J, , 2018. Diagnostic accuracy of the InBiOS AMD rapid diagnostic test for the detection of Burkholderia pseudomallei antigen in grown blood culture broth. Eur J Clin Microbiol Infect Dis 37: 11691177. [Google Scholar]
  65. Robertson G, Sorenson A, Govan B, Ketheesan N, Houghton R, Chen H, AuCoin D, Dillon M, Norton R, , 2015. Rapid diagnostics for melioidosis: a comparative study of a novel lateral flow antigen detection assay. J Med Microbiol 64: 845848. [Google Scholar]
  66. Shaw T, Tellapragada C, Ke V, AuCoin DP, Mukhopadhyay C, , 2018. Performance evaluation of active melioidosis detect-lateral flow Assay (AMD-LFA) for diagnosis of melioidosis in endemic settings with limited resources. PLoS One 13: e0194595. [Google Scholar]
  67. Walewski V, Mechai F, Billard-Pomares T, Juguet W, Jaureguy F, Picard B, Tandjaoui-Lambiotte Y, Carbonnelle E, Bouchaud O, , 2016. MALDI-TOF MS contribution to diagnosis of melioidosis in a nonendemic country in three French travellers. New Microbes New Infect 12: 3134. [Google Scholar]
  68. Karger A, 2012. Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell matrix-assisted laser desorption/ionisation mass spectrometric typing. BMC Microbiol 12: 229. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0998
Loading
/content/journals/10.4269/ajtmh.17-0998
Loading

Data & Media loading...

  • Received : 21 Dec 2017
  • Accepted : 22 Aug 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error