1921
Volume 100, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The mosquito () (.) is the primary vector of dengue, chikungunya, and Zika viruses in the United States. Surveillance for adult is limited, hindering understanding of the mosquito’s seasonal patterns and predictions of areas at elevated risk for autochthonous virus transmission. We developed a simple, intuitive empirical model that uses readily available temperature and humidity variables to predict environmental suitability for low, medium, or high potential abundance of adult in a given city 1 month in advance. Potential abundance was correctly predicted in 73% of months in arid Phoenix, AZ (over a 10-year period), and 63% of months in humid Miami, FL (over a 2-year period). The monthly model predictions can be updated daily, weekly, or monthly and thus may be applied to forecast suitable conditions for to inform vector-control activities and guide household-level actions to reduce mosquito habitat and human exposure.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0860
2018-12-26
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/2/tpmd170860.html?itemId=/content/journals/10.4269/ajtmh.17-0860&mimeType=html&fmt=ahah

References

  1. Grubaugh ND et al., 2017. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546: 401405.
    [Google Scholar]
  2. Johnson TL et al., 2017. Modeling the environmental suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the contiguous United States. J Med Entomol 54: 16051614.
    [Google Scholar]
  3. Hahn MB, Eisen RJ, Eisen L, Boegler KA, Moore CG, McAllister J, Savage HM, Mutebi J-P, 2016. Reported distribution of Aedes (Stegomyia ) aegypti and Aedes (Stegomyia ) albopictus in the United States, 1995–2016 (Diptera: Culicidae). J Med Entomol 53: 11691175.
    [Google Scholar]
  4. Monaghan AJ et al., 2016. On the seasonal occurrence and abundance of the Zika virus vector mosquito Aedes aegypti in the contiguous United States. PLoS Curr 8: e50dfc7f46798675fc63e7d7da563da76.
    [Google Scholar]
  5. Eisen L, Moore CG, 2013. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. J Med Entomol 50: 467478.
    [Google Scholar]
  6. Morin CW, Comrie AC, Ernst K, 2013. Climate and dengue transmission: evidence and implications. Environ Health Perspect 121: 12641272.
    [Google Scholar]
  7. Focks DA, Haile DG, Daniels E, Mount GA, 1993. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J Med Entomol 30: 10031017.
    [Google Scholar]
  8. Morin CW, Monaghan AJ, Hayden MH, Barrera R, Ernst K, 2015. Meteorologically driven simulations of dengue epidemics in San Juan, PR. PLoS Negl Trop Dis 9: e0004002.
    [Google Scholar]
  9. Xu C, Legros M, Gould F, Lloyd AL, 2010. Understanding uncertainties in model-based predictions of Aedes aegypti population dynamics. PLoS Negl Trop Dis 4: e830.
    [Google Scholar]
  10. Reiskind MH, Lounibos LP, 2013. Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida. Med Vet Entomol 27: 421429.
    [Google Scholar]
  11. Sukumaran D, 2016. A review on use of attractants and traps for host seeking Aedes aegypti mosquitoes. Indian J Nat Prod Resour IJNPR Former Nat Prod Radiance NPR 7: 207214.
    [Google Scholar]
  12. Cosgrove BA et al., 2003. Real-time and retrospective forcing in the North American land data assimilation system (NLDAS) project. J Geophys Res Atmospheres 108: 8842.
    [Google Scholar]
  13. Eisen L, Monaghan AJ, Lozano-Fuentes S, Steinhoff DF, Hayden MH, Bieringer PE, 2014. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti, with special reference to the cool geographic range margins. J Med Entomol 51: 496516.
    [Google Scholar]
  14. Pless E, Gloria-Soria A, Evans BR, Kramer V, Bolling BG, Tabachnick WJ, Powell JR, 2017. Multiple introductions of the dengue vector, Aedes aegypti, into California. PLoS Negl Trop Dis 11: e0005718.
    [Google Scholar]
  15. Kearney M, Porter WP, Williams C, Ritchie S, Hoffmann AA, 2009. Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. Funct Ecol 23: 528538.
    [Google Scholar]
  16. Brady OJ et al., 2014. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit Vectors 7: 338.
    [Google Scholar]
  17. Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW, 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci U S A 108: 74607465.
    [Google Scholar]
  18. Hayden MH, Cavanaugh JL, Tittel C, Butterworth M, Haenchen S, Dickinson K, Monaghan AJ, Ernst KC, 2015. Post outbreak review: dengue preparedness and response in Key West, Florida. Am J Trop Med Hyg 93: 397400.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0860
Loading
/content/journals/10.4269/ajtmh.17-0860
Loading

Data & Media loading...

Supplemental Figure and Table

  • Received : 05 Nov 2017
  • Accepted : 07 Nov 2018
  • Published online : 26 Dec 2018
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error