1921
Volume 98, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Here, we report the findings from the first 2 years (2014–2015) of an arbovirus surveillance study conducted in Machala, Ecuador, a dengue-endemic region. Patients with suspected dengue virus (DENV) infections (index cases, = 324) were referred from five Ministry of Health clinical sites. A subset of DENV-positive index cases ( = 44) were selected, and individuals from the index household and four neighboring homes within 200 m were recruited ( = 400). Individuals who entered the study, other than the index cases, are referred to as associates. In 2014, 70.9% of index cases and 35.6% of associates had acute or recent DENV infections. In 2015, 28.3% of index cases and 12.8% of associates had acute or recent DENV infections. For every DENV infection captured by passive surveillance, we detected an additional three acute or recent DENV infections in associates. Of associates with acute DENV infections, 68% reported dengue-like symptoms, with the highest prevalence of symptomatic acute infections in children aged less than 10 years. The first chikungunya virus (CHIKV) infections were detected on epidemiological week 12 in 2015; 43.1% of index cases and 3.5% of associates had acute CHIKV infections. No Zika virus infections were detected. Phylogenetic analyses of isolates of DENV from 2014 revealed genetic relatedness and shared ancestry of DENV1, DENV2, and DENV4 genomes from Ecuador with those from Venezuela and Colombia, indicating the presence of viral flow between Ecuador and surrounding countries. Enhanced surveillance studies, such as this, provide high-resolution data on symptomatic and inapparent infections across the population.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0762
2018-05-09
2018-12-18
Loading full text...

Full text loading...

/deliver/fulltext/14761645/98/5/tpmd170762.html?itemId=/content/journals/10.4269/ajtmh.17-0762&mimeType=html&fmt=ahah

References

  1. WHO, 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. Geneva, Switzerland: World Health Organization. Available at: http://www.who.int/rpc/guidelines/9789241547871/en/. Accessed December 6, 2017.
  2. Dick OB, Martín JLS, Montoya RH, del Diego J, Zambrano B, Dayan GH, , 2012. The history of dengue outbreaks in the Americas. Am J Trop Med Hyg 87: 584593. [Google Scholar]
  3. San Martín JL, Brathwaite O, Zambrano B, Solórzano JO, Bouckenooghe A, Dayan GH, Guzmán MG, , 2010. The epidemiology of dengue in the Americas over the last three decades: a worrisome reality. Am J Trop Med Hyg 82: 128135. [Google Scholar]
  4. Stanaway JD, 2016. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis 16: 712723. [Google Scholar]
  5. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, , 2013. The global distribution and burden of dengue. Nature 496: 504507. [Google Scholar]
  6. WHO, 2017. Dengue and Severe Dengue. Geneva, Switzerland: World Health Organization. Available at: http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed December 6, 2017.
  7. PAHO/WHO, 2017. Number of Reported Cases of Chikungunya Fever in the Americas, by Country or Territory. Geneva, Switzerland: World Health Organization. Available at: http://www.paho.org/hq/index.php?option=com_topics&view=readall&cid=5927&Itemid=40931&lang=en. Accessed February 16, 2018.
  8. Zanluca C, Melo VC, Mosimann AL, Santos GI, Santos CN, Luz K, , 2015. First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz 110: 569572. [Google Scholar]
  9. Campos GS, Bandeira AC, Sardi SI, , 2015. Zika virus outbreak, Bahia, Brazil. Emerg Infect Dis 21: 18851886. [Google Scholar]
  10. PAHO/WHO, 2017. Zika Cases and Congenital Syndrome Associated with Zika Virus Reported by Countries and Territories in the Americas. Cumulative Cases. Washington, DC: Pan American Health Organization/World Health Organization. Available at: http://www.paho.org/hq/index.php?option=com_content&view=article&id=12390&Itemid=42090&lang=en. Accessed February 16, 2018.
  11. PAHO/WHO, 2017. Annual Cases Reported of Dengue. Data, Maps and Statistics. Washington, DC: Pan American Health Organization/World Health Organization. Available at: http://www.paho.org/hq/index.php?option=com_topics&view=rdmore&cid=6290&Itemid=40734. Accessed July 18, 2017.
  12. Camargo S, , 1967. History of Aedes aegypti eradication in the Americas. Bull World Health Organ 36: 602. [Google Scholar]
  13. Gonzalez V, Jurado H, , 2007. Guayaquil: Aedes aegypti, 1740–2007. Guayaquil, Ecuador: Servicio Nacional para La Eradicaccion de Malaria (SNEM) of the Ministry of Health of Ecuador.
  14. United States Centers for Disease Control (CDC), 1989. Dengue epidemic—Ecuador, 1988. MMWR Morb Mortal Wkly Rep 38: 419421. [Google Scholar]
  15. Alava A, Mosquera C, Vargas W, Real J, , 2005. Dengue en el Ecuador 1989–2002. Rev Ecuat Hig Med Trop 42: 1134. [Google Scholar]
  16. Stewart-Ibarra AM, Lowe R, , 2013. Climate and non-climate drivers of dengue epidemics in southern coastal Ecuador. Am J Trop Med Hyg 88: 971981. [Google Scholar]
  17. Stewart-Ibarra AM, Ryan SJ, Beltrán E, Mejía R, Silva M, Muñoz Á, , 2013. Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control. PLoS One 8: e78263. [Google Scholar]
  18. Stewart-Ibarra AM, Luzadis VA, Borbor-Cordova MJ, Silva M, Ordonez T, Beltran Ayala E, Ryan SJ, , 2014. A social-ecological analysis of community perceptions of dengue fever and Aedes aegypti in Machala, Ecuador. BMC Public Health 14: 1135. [Google Scholar]
  19. Stewart Ibarra AM, Muñoz AG, Ryan SJ, Borbor MJ, Ayala EB, Finkelstein JL, Mejia R, Ordonez T, Coronel GCR, Rivero K, , 2014. Spatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010. BMC Infect Dis 14: 610. [Google Scholar]
  20. Kenneson A, Beltrán-Ayala E, Borbor-Cordova MJ, Polhemus ME, Ryan SJ, Endy TP, Stewart-Ibarra AM, , 2017. Social-ecological factors and preventive actions decrease the risk of dengue infection at the household-level: results from a prospective dengue surveillance study in Machala, Ecuador. PLoS Negl Trop Dis 11: e0006150. [Google Scholar]
  21. Anders KL, 2015. Households as foci for dengue transmission in highly urban Vietnam. PLoS Negl Trop Dis 9: e0003528. [Google Scholar]
  22. Yoon I-K, 2012. Fine scale spatiotemporal clustering of dengue virus transmission in children and Aedes aegypti in rural Thai villages. PLoS Negl Trop Dis 6: e1730. [Google Scholar]
  23. Mammen MP, 2008. Spatial and temporal clustering of dengue virus transmission in Thai villages. PLoS Med 5: e205. [Google Scholar]
  24. Thomas SJ, 2015. Improving dengue virus capture rates in humans and vectors in Kamphaeng Phet province, Thailand, using an enhanced spatiotemporal surveillance strategy. Am J Trop Med Hyg 93: 2432. [Google Scholar]
  25. Olkowski S, Stoddard ST, Halsey ES, Morrisson AC, Barker CM, Scott TW, , 2016. Sentinel versus passive surveillance for measuring changes in dengue incidence: evidence from three concurrent surveillance systems in Iquitos, Peru. bioRxiv 040220, doi: 10.1101/040220. [Google Scholar]
  26. Rocha C, Morrison AC, Forshey BM, Blair PJ, Olson JG, Stancil JD, Sihuincha M, Scott TW, Kochel TJ, , 2009. Comparison of two active surveillance programs for the detection of clinical dengue cases in Iquitos, Peru. Am J Trop Med Hyg 80: 656660. [Google Scholar]
  27. Ramos MM, Argüello DF, Luxemburger C, Quiñones L, Muñoz JL, Beatty M, Lang J, Tomashek KM, , 2008. Epidemiological and clinical observations on patients with dengue in Puerto Rico: results from the first year of enhanced surveillance—June 2005–May 2006. Am J Trop Med Hyg 79: 123127. [Google Scholar]
  28. Restrepo BN, Piedrahita LD, Agudelo IY, Parra-Henao G, Osorio JE, , 2012. Frequency and clinical features of dengue infection in a schoolchildren cohort from Medellin, Colombia. J Trop Med 2012. Available at: https://www.hindawi.com/journals/jtm/2012/120496/abs/. Accessed May 11, 2017. [Google Scholar]
  29. Espino C, , 2010. Active Surveillance and Incidence Rate of Dengue Infection in a Cohort of High Risk Population in Maracay, Venezuela. Tampa, FL: University of South Florida. Available at: http://scholarcommons.usf.edu/etd/1626/. Accessed May 11, 2017.
  30. Kuan G, Gordon A, Avilés W, Ortega O, Hammond SN, Elizondo D, Nuñez A, Coloma J, Balmaseda A, Harris E, , 2009. The Nicaraguan pediatric dengue cohort study: study design, methods, use of information technology, and extension to other infectious diseases. Am J Epidemiol 170: 120129. [Google Scholar]
  31. Stoddard ST, 2013. House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci USA 110: 994999. [Google Scholar]
  32. Borbor-Cordova M, 2016. Case study 5.C vector-virus microclimate surveillance system for dengue control in Machala, Ecuador. Climate Services for Health: Improving Public Health Decision-Making in a New Climate. Geneva, Switzerland: World Meteorological Association and World Health Organization. Available at: http://public.wmo.int/en/resources/library/climate-services-health-case-studies. Accessed September 3, 2016.
  33. Endy TP, Chunsuttiwat S, Nisalak A, Libraty DH, Green S, Rothman AL, Vaughn DW, Ennis FA, , 2002. Epidemiology of inapparent and symptomatic acute dengue virus infection: a prospective study of primary school children in Kamphaeng Phet, Thailand. Am J Epidemiol 156: 4051. [Google Scholar]
  34. Sommerfeld J, Kroeger A, , 2012. Eco-bio-social research on dengue in Asia: a multicountry study on ecosystem and community-based approaches for the control of dengue vectors in urban and peri-urban Asia. Pathog Glob Health 106: 428435. [Google Scholar]
  35. Quintero J, 2014. Ecological, biological and social dimensions of dengue vector breeding in five urban settings of Latin America: a multi-country study. BMC Infect Dis 14: 38. [Google Scholar]
  36. Ministerio de Salud Publica, 2010. Casos de Dengue Reportados En El Epi Local Por Semanas Epidemiologicas. Machala, Ecuador: Departamento de Epidemiologia, Direccion Provincial de Salud de El Oro, Ministerio de Salud Publica.
  37. Pan-ngum W, Blacksell SD, Lubell Y, Pukrittayakamee S, Bailey MS, de Silva HJ, Lalloo DG, Day NPJ, White LJ, Limmathurotsakul D, , 2013. Estimating the true accuracy of diagnostic tests for dengue infection using Bayesian latent class models. PLoS One 8: e50765. [Google Scholar]
  38. Pal S, 2015. Multicountry prospective clinical evaluation of two enzyme-linked immunosorbent assays and two rapid diagnostic tests for diagnosing dengue fever. J Clin Microbiol 53: 10921102. [Google Scholar]
  39. United States Centers for Disease Control and Prevention, 2013. DENV-1–4 Real-Time RT-PCR Assay for Detection and Serotype Identification of Dengue Virus. Atlanta, GA: Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/dengue/resources/rt-pcr/cdcpackageinsert.pdf. Accessed December 6, 2017.
  40. Santiago GA, Vergne E, Quiles Y, Cosme J, Vazquez J, Medina JF, Medina F, Colón C, Margolis H, Muñoz-Jordán JL, , 2013. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus. PLoS Negl Trop Dis 7: e2311. [Google Scholar]
  41. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR, , 2008. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 14: 12321239. [Google Scholar]
  42. Bolger AM, Lohse M, Usadel B, , 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 21142120. [Google Scholar]
  43. Li H, , 2013. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. ArXiv Prepr ArXiv13033997. Available at: http://arxiv.org/abs/1303.3997. Accessed November 11, 2016.
  44. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, , 2009. 1000 genone project data processing subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 25: 20782079. [Google Scholar]
  45. Hunter JD, , 2007. Matplotlib: a 2D graphics environment. Comput Sci Eng 9: 9095. [Google Scholar]
  46. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S,  , 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 27252729. [Google Scholar]
  47. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, , 1990. Basic local alignment search tool. J Mol Biol 215: 403410. [Google Scholar]
  48. Posada D, , 2008. jModelTest: phylogenetic model averaging. Mol Biol Evol 25: 12531256. [Google Scholar]
  49. Guindon S, Gascuel O, , 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696704. [Google Scholar]
  50. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O, , 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307321. [Google Scholar]
  51. Pyke AT, Moore PR, Taylor CT, Hall-Mendelin S, Cameron JN, Hewitson GR, Pukallus DS, Huang B, Warrilow D, van den Hurk AF, , 2016. Highly divergent dengue virus type 1 genotype sets a new distance record. Sci Rep 6: 22356. [Google Scholar]
  52. Fry SR, 2011. The diagnostic sensitivity of dengue rapid test assays is significantly enhanced by using a combined antigen and antibody testing approach. PLoS Negl Trop Dis 5: e1199. [Google Scholar]
  53. Beckett CG, 2005. Early detection of dengue infections using cluster sampling around index cases. Am J Trop Med Hyg 72: 777782. [Google Scholar]
  54. Reiner RC, Jr 2014. Time-varying, serotype-specific force of infection of dengue virus. Proc Natl Acad Sci USA 111: E2694E2702. [Google Scholar]
  55. Rico-Hesse R, , 2010. Dengue virus virulence and transmission determinants. Dengue Virus. New York, NY: Springer, 4555.
  56. Junxiong P, Yee-Sin L, , 2015. Clustering, climate and dengue transmission. Expert Rev Anti Infect Ther 13: 731740. [Google Scholar]
  57. Standish K, Kuan G, Avilés W, Balmaseda A, Harris E, , 2010. High dengue case capture rate in four years of a cohort study in Nicaragua compared to national surveillance data. PLoS Negl Trop Dis 4: e633. [Google Scholar]
  58. Lustig Y, Mendelson E, Paran N, Melamed S, Schwartz E, , 2016. Detection of Zika virus RNA in whole blood of imported Zika virus disease cases up to 2 months after symptom onset, Israel, December 2015 to April 2016. Euro Surveill 21. Available at: http://www.e-sciencecentral.org/articles/SC000017361. Accessed May 11, 2017. [Google Scholar]
  59. Gourinat A-C, O’Connor O, Calvez E, Goarant C, Dupont-Rouzeyrol M, , 2015. Detection of Zika virus in urine. Emerg Infect Dis 21: 8486. [Google Scholar]
  60. Ali A, 2013. Seroepidemiology of dengue fever in Khyber Pakhtunkhawa, Pakistan. Int J Infect Dis 17: e518e523. [Google Scholar]
  61. Fernández E, Smieja M, Walter SD, Loeb M, , 2016. A predictive model to differentiate dengue from other febrile illness. BMC Infect Dis 16: 694. [Google Scholar]
  62. Zim MM, Sam I-C, Omar SS, Chan YF, AbuBakar S, Kamarulzaman A, , 2013. Chikungunya infection in Malaysia: comparison with dengue infection in adults and predictors of persistent arthralgia. J Clin Virol 56: 141145. [Google Scholar]
  63. Murray KO, 2013. Identification of dengue fever cases in Houston, Texas, with evidence of autochthonous transmission between 2003 and 2005. Vector Borne Zoonotic Dis 13: 835845. [Google Scholar]
  64. Parreira R, 2014. Angola’s 2013 dengue outbreak: clinical, laboratory and molecular analyses of cases from four Portuguese institutions. J Infect Dev Ctries 8: 12101215. [Google Scholar]
  65. Thai KT, 2010. Clinical, epidemiological and virological features of dengue virus infections in Vietnamese patients presenting to primary care facilities with acute undifferentiated fever. J Infect 60: 229237. [Google Scholar]
  66. Waggoner JJ, 2016. Viremia and clinical presentation in Nicaraguan patients Infected with Zika virus, chikungunya virus, and dengue virus. Clin Infect Dis 63: 15841590. [Google Scholar]
  67. Thomas L, 2008. Influence of the dengue serotype, previous dengue infection, and plasma viral load on clinical presentation and outcome during a dengue-2 and dengue-4 co-epidemic. Am J Trop Med Hyg 78: 990998. [Google Scholar]
  68. Le Gonidec E, 2016. Clinical survey of dengue virus circulation in the republic of Djibouti between 2011 and 2014 identifies serotype 3 epidemic and recommends clinical diagnosis guidelines for resource limited settings. PLoS Negl Trop Dis 10: e0004755. [Google Scholar]
  69. Balmaseda A, 2010. Trends in patterns of dengue transmission over 4 years of a pediatric cohort study in Nicaragua. J Infect Dis 201: 514. [Google Scholar]
  70. Endy TP, Anderson KB, Nisalak A, Yoon I-K, Green S, Rothman AL, Thomas SJ, Jarman RG, Libraty DH, Gibbons RV, , 2011. Determinants of inapparent and symptomatic dengue infection in a prospective study of primary school children in Kamphaeng Phet, Thailand. PLoS Negl Trop Dis 5: e975. [Google Scholar]
  71. Handel AS, Ayala EB, Borbor-Cordova MJ, Fessler AG, Finkelstein JL, Espinoza RXR, Ryan SJ, Stewart-Ibarra AM, , 2016. Knowledge, attitudes, and practices regarding dengue infection among public sector healthcare providers in Machala, Ecuador. Trop Dis Travel Med Vaccines 2: 8. [Google Scholar]
  72. Lowe R, Stewart-Ibarra AM, Petrova D, García-Díez M, Borbor-Cordova MJ, Mejía R, Regato M, Rodó X, , 2017. Climate services for health: predicting the evolution of the 2016 dengue season in Machala, Ecuador. Lancet Planet Health 1: e142e151. [Google Scholar]
  73. Viennet E, Harley D, , 2017. Climate services for health: cooperation for climate informed dengue surveillance. Lancet Planet Health 1: e126e127. [Google Scholar]
  74. Shepard DS, Coudeville L, Halasa YA, Zambrano B, Dayan GH, , 2011. Economic impact of dengue illness in the Americas. Am J Trop Med Hyg 84: 200207. [Google Scholar]
  75. Heydari N, Larsen DA, Neira M, Beltrán Ayala E, Fernandez P, Adrian J, Rochford R, Stewart-Ibarra AM, , 2017. Household dengue prevention interventions, expenditures, and barriers to Aedes aegypti control in Machala, Ecuador. Int J Environ Res Public Health 14: 196. [Google Scholar]
  76. Krisher LK, 2016. Successful malaria elimination in the Ecuador–Peru border region: epidemiology and lessons learned. Malar J 15: 573. [Google Scholar]
  77. Ponce P, Morales D, Argoti A, Cevallos VE, , 2018. First report of Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae), the Asian Tiger Mosquito, in Ecuador. J Med Ento 55: 248249. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0762
Loading
/content/journals/10.4269/ajtmh.17-0762
Loading

Data & Media loading...

Supplemental Table

  • Received : 29 Sep 2017
  • Accepted : 11 Jan 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error