1921
Volume 100, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

American cutaneous leishmaniasis (ACL) is a common and important vector-borne parasitic zoonosis in Panamá. Here, we study spp. infection rates and blood-feeding patterns among common sand flies in Trinidad de Las Minas, a rural community with hyperendemic ACL transmission, and where a deltamethrin fogging trial was performed. Sand flies were collected from April 2010 to June 2011 with light traps installed inside and in the peridomicile of 24 houses. We restricted our analysis to the most abundant species at the study site: , , , , and . We detected spp. infection in sand flies by polymerase chain reaction (PCR) amplification of the internal transcribed spacer region 1 (ITS-1) in pooled females (1–10 females per pool). Host species of engorged sand flies were identified using a cytochrome b PCR. From 455 sand fly pools analyzed, 255 pools were positive for spp., with an estimated infection rate (confidence interval) of 0.096 [0.080–0.115] before the deltamethrin fogging which slightly, but not significantly ( > 0.05), increased to 0.116 [0.098–0.136] after the deltamethrin fogging. Blood meal analysis suggested that pigs, goats, and birds were the most common sand fly blood sources, followed by humans and domestic dogs. DNA sequencing from a subsample of ITS-1 positive pools suggests that , , and other spp. were the parasite species infecting the most common vectors at the study site. Our data confirm an association between sand fly species, humans, domestic dogs, and pigs and spp. parasites in rural Panamá.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0628
2019-02-18
2020-08-13
Loading full text...

Full text loading...

/deliver/fulltext/14761645/100/4/tpmd170628.html?itemId=/content/journals/10.4269/ajtmh.17-0628&mimeType=html&fmt=ahah

References

  1. Miranda A, Carrasco R, Paz H, Pascale JM, Samudio F, Saldaña A, Santamaría G, Mendoza Y, Calzada JE, 2009. Molecular epidemiology of American tegumentary leishmaniasis in Panama. Am J Trop Med Hyg 81: 565571.
    [Google Scholar]
  2. Ministerio de Salud de Panamá (Minsa), 2014. Informe Anual de Epidemiología de la Leishmaniasis. Panamá: Depto. De Epidemiologia, Dirección de Salud Pública.
  3. Chaves LF, Cohen JM, Pascual M, Wilson ML, 2008. Social exclusion modifies climate and deforestation impacts on a vector-borne disease. PLoS Negl Trop Dis 2: e176.
    [Google Scholar]
  4. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M; WHO Leishmaniasis Control Team, 2012. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7: e35671.
    [Google Scholar]
  5. Salomón OD, Quintana MG, Mastrángelo AV, Fernández MS, 2012. Leishmaniasis and climate change—case study: Argentina. J Trop Med 2012: 601242.
    [Google Scholar]
  6. Chaves LF, Calzada JE, Valderama A, Saldaña A, 2014. Cutaneous leishmaniasis and sand fly fluctuations are associated with El Niño in Panamá. PLoS Negl Trop Dis 8: e3210.
    [Google Scholar]
  7. Yamada K, Valderrama A, Gottdenker N, Cerezo L, Minakawa N, Saldaña A, Calzada JE, Chaves LF, 2016. Macroecological patterns of American cutaneous leishmaniasis transmission across the health areas of Panamá (1980–2012). Parasite Epidemiol Control 1: 4255.
    [Google Scholar]
  8. Christensen HA, Fairchild GB, Herrer A, Johnson CM, Young DG, Vasquez AM, 1983. The ecology of cutaneous leishmaniasis in the Republic of Panama. J Med Entomol 20: 463484.
    [Google Scholar]
  9. Vásquez AM, Paz H, Méndez E, Alvar J, 1994. Leishmaniasis en Panamá. Panamá: Ministerio de Salud, 12.
  10. Valderrama A, Herrera M, Salazar A, 2008. Relacioìn entre la composicioìn de especies del geìnero de Lutzomyia frança (Diptera: Psychodidae: Phlebotominae) y los diferentes tipos de bosques en Panamaì. Acta Zool Mex 24: 6778.
    [Google Scholar]
  11. Telford SR, Herrer A, Christensen HA, 1972. Enzootic cutaneous leishmaniasis in eastern Panama. Ecological factors relating to the mammalian hosts. Ann Trop Med Parasitol 66: 173179.
    [Google Scholar]
  12. Herrer A, Christensen HA, 1980. Leishmania braziliensis in the Panamanian two-toed sloth, Choloepus hoffmanni. Am J Trop Med Hyg 29: 11961200.
    [Google Scholar]
  13. Christensen H, Johnson C, Vasquez AM, 1993. Leishmaniasis cutánea en Panamá: un breve resumen [Article in Spanish]. Rev Med Panama 9: 182187.
    [Google Scholar]
  14. González K et al., 2015. Survey of wild mammal hosts of cutaneous leishmaniasis parasites in Panamá and Costa Rica. Trop Med Health 43: 7578.
    [Google Scholar]
  15. Calzada JE, Saldaña A, González K, Rigg C, Pineda V, Santamaría AM, Rodríguez I, Gottdenker NL, Laurenti MD, Chaves LF, 2015. Cutaneous leishmaniasis in dogs: is high seroprevalence indicative of a reservoir role? Parasitology 142: 12021214.
    [Google Scholar]
  16. Miranda A, Saldaña A, González K, Paz H, Santamaría G, Samudio F, Calzada JE, 2012. Evaluation of PCR for cutaneous leishmaniasis diagnosis and species identification using filter paper samples in Panama, central America. Trans R Soc Trop Med Hyg 106: 544548.
    [Google Scholar]
  17. Kent RJ, 2009. Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Mol Ecol Resour 9: 418.
    [Google Scholar]
  18. Afonso MM, Duarte R, Miranda JC, Caranha L, Rangel EF, 2012. Studies on the feeding habits of Lutzomyia (Lutzomyia) longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae: Phlebotominae) populations from endemic areas of American visceral leishmaniasis in northeastern Brazil. J Trop Med 2012: 858657.
    [Google Scholar]
  19. Rêgo FD, Rugani JMN, Shimabukuro PHF, Tonelli GB, Quaresma PF, Gontijo CMF, 2015. Molecular detection of Leishmania in phlebotomine sand flies (Diptera: Psychodidae) from a cutaneous leishmaniasis focus at Xakriabá Indigenous Reserve, Brazil. PLoS One 10: e0122038.
    [Google Scholar]
  20. Van Eys GJ, Schoone GJ, Kroon NC, Ebeling SB, 1992. Sequence analysis of small subunit ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Mol Biochem Parasitol 51: 133142.
    [Google Scholar]
  21. Kirstein F, Gray JS, 1996. A molecular marker for the identification of the zoonotic reservoirs of lyme borreliosis by analysis of the blood meal in its European vector Ixodes ricinus. Appl Environ Microbiol 62: 40604065.
    [Google Scholar]
  22. Aransay AM, Scoulica E, Tselentis Y, 2000. Detection and identification of Leishmania DNA within naturally infected sand flies by seminested PCR on minicircle kinetoplastic DNA. Appl Environ Microbiol 66: 19331938.
    [Google Scholar]
  23. Schönian G, Nasereddin A, Dinse N, Schweynoch C, Schallig HDF, Presber W, Jaffe CL, 2003. PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagn Microbiol Infect Dis 47: 349358.
    [Google Scholar]
  24. Quaresma PF, de Lima Carvalho GM, Ramos MCNF, Andrade Filho JD, 2012. Natural Leishmania spp. reservoirs and phlebotomine sand fly food source identification in Ibitipoca State Park, Minas Gerais, Brazil. Mem Inst Oswaldo Cruz 107: 480485.
    [Google Scholar]
  25. Saldaña A, Chaves LF, Rigg CA, Wald C, Calzada JE, 2013. Clinical cutaneous leishmaniasis rates are associated with household Lutzomyia gomezi, Lu. panamensis, and Lu. trapidoi abundance in Trinidad de Las Minas, western Panama. Am J Trop Med Hyg 88: 572574.
    [Google Scholar]
  26. Chaves LF, Calzada JE, Rigg C, Valderrama A, Gottdenker NL, Saldaña A, 2013. Leishmaniasis sand fly vector density reduction is less marked in destitute housing after insecticide thermal fogging. Parasit Vectors 6: 164.
    [Google Scholar]
  27. Calzada JE, Saldaña A, Rigg C, Valderrama A, Romero L, Chaves LF, 2013. Changes in phlebotomine sand fly species composition following insecticide thermal fogging in a rural setting of western Panamá. PLoS One 8: e53289.
    [Google Scholar]
  28. Young D, Duncan M, 1994. Guide to the Identification and Geographic Distribution of Lutzomyia Sand Flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). Memories of the American Entomological Institute. Gainesville, FL: Associated Publishers, 54.
  29. Kuhls K, Mauricio IL, Pratlong F, Presber W, Schönian G, 2005. Analysis of ribosomal DNA internal transcribed spacer sequences of the Leishmania donovani complex. Microbes Infect 7: 12241234.
    [Google Scholar]
  30. Kent RJ, Norris DE, 2005. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. Am J Trop Med Hyg 73: 336342.
    [Google Scholar]
  31. Fornadel CM, Norris DE, 2008. Increased endophily by the malaria vector Anopheles arabiensis in southern Zambia and identification of digested blood meals. Am J Trop Med Hyg 79: 876880.
    [Google Scholar]
  32. Kumar S, Stecher G, Tamura K, 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 18701874.
    [Google Scholar]
  33. Farrington CP, 1992. Estimating prevalence by group testing using generalized linear models. Stat Med 11: 15911597.
    [Google Scholar]
  34. Speybroeck N, Williams CJ, Lafia KB, Devleesschauwer B, Berkvens D, 2012. Estimating the prevalence of infections in vector populations using pools of samples. Med Vet Entomol 26: 361371.
    [Google Scholar]
  35. Venables WN, Ripley BD, 2002. Modern Applied Statistics with S. Switzerland AG: Springer.
  36. Añez N, Nieves E, Cazorla D, Oviedo M, De Yarbuh AL, Valera M, 1994. Epidemiology of cutaneous leishmaniasis in Merida, Venezuela. III. Altitudinal distribution, age structure, natural infection and feeding behavior of sandflies and their relation to the risk of transmission. Ann Trop Med Parasitol 88: 279287.
    [Google Scholar]
  37. Chaves LF, Harrington LC, Keogh CL, Nguyen AM, Kitron UD, 2010. Blood-feeding patterns of mosquitoes: random or structured? Front Zool 7: 3.
    [Google Scholar]
  38. Rabinovich JE, Kitron UD, Obed Y, Yoshioka M, Gottdenker N, Chaves LF, 2011. Ecological patterns of blood-feeding by kissing-bugs (Hemiptera, Reduviidae, Triatominae). Mem Inst Oswaldo Cruz 106: 479494.
    [Google Scholar]
  39. Palatnik-de-Sousa C, Day MJ, 2011. One Health: the global challenge of epidemic and endemic leishmaniasis. Parasit Vectors 4: 197.
    [Google Scholar]
  40. Chaves LF, 2017. Climate change and the biology of insect vectors of human pathogens. Johnson S, Jones H, eds. Global Climate Change and Terrestrial Invertebrates. Hoboken, NJ: Wiley-Blackwell, 126–147.
  41. Ruiz Márvez E, 2011. Estandarización de la Técnica de Amplificación del Gen Citocromo B, Para Identificar la Fuente de Alimento de Cx. quinquefasciatus en el Centro Agropecuario Marengo de la Universidad Nacional de Colombia Sede Bogotá. Bogotá, Colombia: Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, 66.
  42. Pérez JE, Ogusuku E, Inga R, Lopez M, Monje J, Paz L, Nieto E, Arevalo J, Guerra H, 1994. Natural Leishmania infection of Lutzomyia spp. in Peru. Trans R Soc Trop Med Hyg 88: 161164.
    [Google Scholar]
  43. Torres M et al., 1998. Lutzomyia nuñeztovari anglesi (Diptera: Psychodidae) as a probable vector of Leishmania braziliensis in the Yungas, Bolivia. Acta Trop 71: 311316.
    [Google Scholar]
  44. Rodríguez N, De Lima H, Aguilar CM, Rodriguez A, Barker DC, Convit J, 2002. Molecular epidemiology of cutaneous leishmaniasis in Venezuela. Trans R Soc Trop Med Hyg 96 (Suppl 1): S105S109.
    [Google Scholar]
  45. Jorquera A, González R, Marchán-Marcano E, Oviedo M, Matos M, 2005. Multiplex-PCR for detection of natural Leishmania infection in Lutzomyia spp. captured in an endemic region for cutaneous leishmaniasis in state of Sucre, Venezuela. Mem Inst Oswaldo Cruz 100: 4548.
    [Google Scholar]
  46. De Pita-Pereira D, Alves CR, Souza MB, Brazil RP, Bertho AL, de Figueiredo Barbosa A, Britto CC, 2005. Identification of naturally infected Lutzomyia intermedia and Lutzomyia migonei with Leishmania (Viannia) braziliensis in Rio de Janeiro (Brazil) revealed by a PCR multiplex non-isotopic hybridisation assay. Trans R Soc Trop Med Hyg 99: 905913.
    [Google Scholar]
  47. Córdoba-Lanús E, De Grosso ML, Piñero JE, Valladares B, Salomón OD, 2006. Natural infection of Lutzomyia neivai with Leishmania spp. in northwestern Argentina. Acta Trop 98: 15.
    [Google Scholar]
  48. Paiva BR, Secundino NF, Nascimento JC, Pimenta PF, Galati EA, Junior HF, Malafronte RS, 2006. Detection and identification of Leishmania species in field-captured phlebotomine sandflies based on mini-exon gene PCR. Acta Trop 99: 252259.
    [Google Scholar]
  49. Perruolo G, Rodríguez N, Feliciangeli MD, 2006. Isolation of Leishmania (Viannia) braziliensis from Lutzomyia spinicrassa (species group Verrucarum) Morales Osorno Mesa, Osorno and Hoyos 1969, in the Venezuelan Andean region. Parasite 13: 1722.
    [Google Scholar]
  50. Oliveira-Pereira YN, Rebêlo JM, Moraes JL, Pereira SR, 2006. [Molecular diagnosis of the natural infection rate due to Leishmania sp in sandflies (Psychodidae, Lutzomyia) in the Amazon region of Maranhão, Brazil] [Article in Portuguese.] Rev Soc Bras Med Trop 39: 540543.
    [Google Scholar]
  51. Santamaría E, Ponce N, Zipa Y, Ferro C, 2006. Presencia en el peridomicilio de vectores infectados con Leishmania (Viannia) panamensis en dos focos endémicos en el occidente de Boyacá, piedemonte del valle del Magdalena medio, Colombia. Biomedica 26: 8294.
    [Google Scholar]
  52. Cochero S, Anaya Y, Díaz Y, Paternina M, Luna A, Paternina L, Eduar Elías B, 2007. [Natural infection of Lutzomyia cayennensis cayennensis with trypanosomatid parasites (Kinetoplastida: Trypanosomatidae) in Los Montes de Maria, Colombia] [article in Spanish]. Rev Cubana Med Trop 59: 3539.
    [Google Scholar]
  53. Do Nascimento JC, de Paiva BR, dos Santos Malafronte R, Fernandes WD, Galati EA, 2007. Natural infection of phlebotomines (Diptera: Psychodidae) in a visceral-leishmaniasis focus in Mato Grosso do Sul, Brazil. Rev Inst Med Trop 49: 119122.
    [Google Scholar]
  54. Neitzke HC, Scodro RB, Castro KR, Sversutti AC, Silveira TG, Teodoro U, 2008. Research of natural infection of phlebotomines for Leishmania, in the state of Paraná. Rev Soc Bras Med Trop 41: 1722.
    [Google Scholar]
  55. Marcondes CB, Bittencourt IA, Stoco PH, Eger I, Grisard EC, Steindel M, 2009. Natural infection of Nyssomyia neivai (Pinto, 1926) (Diptera: Psychodidae, Phlebotominae) by Leishmania (Viannia) spp. in Brazil. Trans R Soc Trop Med Hyg 103: 10931097.
    [Google Scholar]
  56. Sánchez-García L, Berzunza-Cruz M, Becker-Fauser I, Rebollar-Téllez EA, 2010. Sand flies naturally infected by Leishmania (L.) mexicana in the peri-urban area of Chetumal city, Quintana Roo, México. Trans R Soc Trop Med Hyg 104: 406411.
    [Google Scholar]
  57. Kato H, Gomez EA, Cáceres AG, Vargas F, Mimori T, Yamamoto K, Iwata H, Korenaga M, Velez L, Hashiguchi Y, 2011. Natural infections of man-biting sand flies by Leishmania and Trypanosoma species in the northern Peruvian Andes. Vector Borne Zoonotic Dis 11: 515521.
    [Google Scholar]
  58. Valdivia HO et al., 2012. Natural Leishmania infection of Lutzomyia auraensis in Madre de Dios, Peru, detected by a fluorescence resonance energy transfer-based real-time polymerase chain reaction. Am J Trop Med Hyg 87: 511517.
    [Google Scholar]
  59. Vásquez Trujillo A, González Reina AE, Góngora Orjuela A, Prieto Suárez E, Palomares JE, Buitrago Alvarez LS, 2013. Seasonal variation and natural infection of Lutzomyia antunesi (Diptera: Psychodidae: Phlebotominae), an endemic species in the Orinoquia region of Colombia. Mem Inst Oswaldo Cruz 108: 463469.
    [Google Scholar]
  60. Brito VN, Almeida Ado B, Nakazato L, Duarte R, Souza CO, Sousa VR, 2014. Phlebotomine fauna, natural infection rate and feeding habits of Lutzomyia cruzi in Jaciara, state of Mato Grosso, Brazil. Mem Inst Oswaldo Cruz 109: 899904.
    [Google Scholar]
  61. Neitzke-Abreu HC, Reinhold-Castro KR, Venazzi MS, Scodro RB, Dias Ade C, Silveira TG, Teodoro U, Lonardoni MV, 2014. Detection of Leishmania (Viannia) in Nyssomyia neivai and Nyssomyia whitmani by multiplex polymerase chain reaction, in southern Brazil. Rev Inst Med Trop Sao Paulo 56: 391395.
    [Google Scholar]
  62. Moya S, Giuliani M, Manteca Acosta M, Salomón OD, Liotta DJ, 2015. First description of Migonemyia migonei (França) and Nyssomyia whitmani (Antunes & Coutinho) (Psychodidae: Phlebotominae) natural infected by Leishmania infantum in Argentina. Acta Trop 152: 181184.
    [Google Scholar]
  63. Pereira Júnior AM, Garcia Teles CB, de Azevedo dos Santos AP, de Souza Rodrigues M, Marialva EF, Costa Pessoa FA, Fernandes Medeiros J, 2015. Ecological aspects and molecular detection of Leishmania DNA ross (Kinetoplastida: Trypanosomatidae) in phlebotomine sandflies (Diptera: Psychodidae) in terra Firme and Várzea environments in the middle Solimões region, Amazonas state, Brazil. Parasit Vectors 8: 180.
    [Google Scholar]
  64. Arias JR, Miles MA, Naiff RD, Póvoa MM, Freitas RA, Biancardi CB, Castellon EG, 1985. Flagellate infection of Brazilian sandflies (Diptera: Psychodidadae): isolation in vitro and biochemical identification of Endotrypanum and Leishmania. Am J Trop Med Hyg 34: 10981108.
    [Google Scholar]
  65. Miranda JC, Reis E, Schriefer A, Gonçalves M, Reis MG, Carvalho L, Fernandes O, Barral-Netto M, Barral A, 2002. Frequency of infection of Lutzomyia phlebotomines with Leishmania braziliensis in a Brazilian endemic area as assessed by pinpoint capture and polymerase chain reaction. Mem Inst Oswaldo Cruz 97: 185188.
    [Google Scholar]
  66. Silva TM, Castellón GE, 2012. Flebotomineos (Diptera: Psychodiae) infectados naturalmente por tripanosomatídeos (Kinetoplastida: Trypanosomatidae) em fragmentos florestais urbanos em Manaus—Amazonas (Brasil). Rev Colombiana Cienc Anim 4: 121129.
    [Google Scholar]
  67. Tesh RB, Chaniotis BN, Aronson MD, Johnson KM, 1971. Natural host preferences of Panamanian phlebotomine sandflies as determined by precipitin test. Am J Trop Med Hyg 20: 150156.
    [Google Scholar]
  68. Chaves LF, Hernandez MJ, 2004. Mathematical modelling of American cutaneous leishmaniasis: incidental hosts and threshold conditions for infection persistence. Acta Trop 92: 245252.
    [Google Scholar]
  69. Chaves LF, Hernandez MJ, Dobson AP, Pascual M, 2007. Sources and sinks: revisiting the criteria for identifying reservoirs for American cutaneous leishmaniasis. Trends Parasitol 23: 311316.
    [Google Scholar]
  70. Porter C, De Foliart G, 1981. The man-biting activity of phlebotomine sand flies (Diptera: Psychodidae) in tropical wet forest environment in Colombia. Arq Zool São Paulo 30: 81158.
    [Google Scholar]
  71. Feliciangeli MD, 1987. Ecology of sandflies (Diptera: Psychodidae) in a restricted focus of cutaneous leishmaniasis in northern Venezuela. II. Species composition in relation to habitat, catching method and hour of catching. Mem Inst Oswaldo Cruz 82: 125131.
    [Google Scholar]
  72. Feliciangeli MD, 1997. Hourly activity of Lutzomyia ovallesi and L. gomezi (Diptera: Psychodidae), vectors of cutaneous leishmaniasis in northcentral Venezuela. J Med Entomol 34: 110115.
    [Google Scholar]
  73. Valderrama A, Tavares M, Andrade D, 2014. Phylogeography of the Lutzomyia gomezi (Diptera: Phlebotominae) on the Panama Isthmus. Parasit Vectors 7: 9.
    [Google Scholar]
  74. Young DG, Arias JR, 1992. Flebótomos Vectores de Leishmaniosis en las Américas. Washington, DC: OPAS, 33.
  75. Contreras MA, 2013. Lutzomyia spp. (Diptera: Psychodidae) en Zonas Cafeteras de la Región Andina Colombiana: Taxonomía e Importancia Médica. Tesis de Maestría, Facultad de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia, 196.
  76. Dutari LC, Loaiza JR, 2014. American cutaneous leishmaniasis in Panama: a historical review of entomological studies on anthropophilic Lutzomyia sand fly species. Parasit Vectors 7: 218.
    [Google Scholar]
  77. Feliciangeli M, 2014. Leishmaniasis en Venezuela: situación actual, acciones y perspectivas para el control vectorial en el marco de un programa de control multisectorial. Bol Mal Salud Amb 54: 17.
    [Google Scholar]
  78. Cazorla-Perfetti D, 2015. Lista comentada de los flebotominos (Diptera: Psychodidae, Phlebotominae). Revista Multidisciplinaria Del Consejo De Investigación De La Universidad De Oriente 27: 178231.
    [Google Scholar]
  79. Hashiguchi Y, Chiller T, Inchausti A, De Arias A, Kawabata M, Alexander JB, 1992. Phlebotomine sand fly species in Paraguay and their infection with Leishmania. Ann Trop Med Parasitol 86: 175180.
    [Google Scholar]
  80. Naiff R, Freitas R, Naiff M, Arias J, Barret T, Momen H, Grimaldi Júnior G, 1991. Epidemiological and nosological aspects of Leishmania naiffi Lainson & Shaw, 1989. Mem Inst Oswaldo Cruz 86: 317321.
    [Google Scholar]
  81. Pratlong F, Deniau M, Darie H, Eichenlaub S, Pröll S, Garrabe E, Dedet J, 2002. Human cutaneous leishmaniasis caused by Leishmania naiffi is wide-spread in South America. Ann Trop Med Parasitol 96: 781785.
    [Google Scholar]
  82. Fagundes-Silva GA, Romero GA, Cupolillo E, Yamashita EP, Gomes-Silva A, Guerra JA, Da-Cruz AM, 2015. Leishmania (Viannia) naiffi: rare enough to be neglected? Mem Inst Oswaldo Cruz 110: 797800.
    [Google Scholar]
  83. Azpurua J, De La Cruz D, Valderama A, Windsor D, 2010. Lutzomyia sand fly diversity and rates of infection by Wolbachia and an exotic Leishmania species on Barro Colorado Island, Panama. PLoS Negl Trop Dis 4: e627.
    [Google Scholar]
  84. Kieran TJ, Gottdenker NL, Varian CP, Saldaña A, Means N, Owens D, Calzada JE, Glenn TC, 2017. Blood meal source characterization using illumina sequencing in the Chagas disease vector Rhodnius pallescens (Hemiptera: Reduviidae) in Panamá. J Med Entomol 54: 17861789.
    [Google Scholar]
  85. Tanure A, Peixoto JC, Afonso MM, Duarte R, Pinheiro ADC, Coelho SVB, Barata RA, 2015. Identification of sandflies (Diptera: Psychodidae: Phlebotominae) blood meals in an endemic leishmaniasis area in Brazil. Rev Inst Med Trop Sao Paulo 57: 321324.
    [Google Scholar]
  86. Obwaller AG, Karakus M, Poeppl W, Töz S, Özbel Y, Aspöck H, Walochnik J, 2016. Could Phlebotomus mascittii play a role as a natural vector for Leishmania infantum? New data. Parasit Vectors 9: 458.
    [Google Scholar]
  87. Senghor MW et al., 2016. Transmission of Leishmania infantum in the canine leishmaniasis focus of Mont-Rolland, Senegal: ecological, parasitological and molecular evidence for a possible role of Sergentomyia sand flies. PLoS Negl Trop Dis 10: 11.
    [Google Scholar]
  88. Mahmoudzadeh-Niknam H, Abrishami F, Doroudian M, Moradi M, Alimohammadian M, Parvizi P, Hatam G, Mohebali M, Khalaj V, 2011. The problem of mixing up of Leishmania isolates in the laboratory: suggestion of ITS1 gene sequencing for verification of species. Iran J Parasitol 6: 4148.
    [Google Scholar]
  89. Killick-Kendrick R, Molyneux DH, Ashford RW, 1974. Leishmania in phlebotomid sandflies. I. Modifications of the flagellum associated with attachment to the mid-gut and oesophageal valve of the sand fly. Proc R Soc Lond B Biol Sci 187: 409419.
    [Google Scholar]
  90. Chaves LF, Añez N, 2004. Species co-occurrence and feeding behavior in sand fly transmission of American cutaneous leishmaniasis in western Venezuela. Acta Trop 92: 219224.
    [Google Scholar]
  91. Chaves LF, Añez N, 2016. Nestedness patterns of sand fly (Diptera: Psychodidae) species in a neotropical semi-arid environment. Acta Trop 153: 713.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0628
Loading
/content/journals/10.4269/ajtmh.17-0628
Loading

Data & Media loading...

Supplemental figure and table

  • Received : 07 Aug 2017
  • Accepted : 22 Jul 2018
  • Published online : 18 Feb 2019

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error