• 1.

    World Health Organization, 2020. Chagas Disease (American Trypanosomiasis). Geneva, Switzerland: WHO. Available at: https://www.who.int/chagas/disease/en/. Accessed May 5, 2020.

    • Search Google Scholar
    • Export Citation
  • 2.

    Dias JCP, Amato Neto V, Luna EJDA, 2011. Alternative transmission mechanisms of Trypanosoma cruzi in Brazil and proposals for their prevention. Rev Soc Bras Med Trop 44: 375379.

    • Search Google Scholar
    • Export Citation
  • 3.

    Galvão C, 2020. Taxonomia dos Vetores da Doença de Chagas da Forma à Molécula, quase três séculos de história. Oliveira J, Alevi KCC, Camargo LMA, Meneguetti DUO, eds. Atualidades Em Medicina Tropical No Brasil: Vetores. Rio Branco, Brazil: Stricto Sensu Editora, Rio Branco, 937.

    • Search Google Scholar
    • Export Citation
  • 4.

    De Keersmaecker SC, Thijs IM, Vanderleyden J, Marchal K, 2006. Integration of omics data: how well does it work for bacteria? Mol Microb 62: 12391250.

    • Search Google Scholar
    • Export Citation
  • 5.

    Panzera Y, Pita S, Ferreiro MJ, Ferrandis I, Lages C, Pérez R, Silva AE, Guerra M, Panzera F, 2012. High dynamics of rDNA cluster location in kissing bug holocentric chromosomes (Triatominae, Heteroptera). Cytogenet Genome Res 138: 5667.

    • Search Google Scholar
    • Export Citation
  • 6.

    Mesquita RD 2015. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Nat Acad Sci U S A 112: 1493614941.

    • Search Google Scholar
    • Export Citation
  • 7.

    Severi-Aguiar GDDC, Oliveira MTVDA, 2005. Localization of rDNA sites in holocentric chromosomes of three species of triatomines (Heteroptera, Triatominae). Genet Mol Res 4: 704709.

    • Search Google Scholar
    • Export Citation
  • 8.

    Severi-Aguiar GDC, Lourenço LB, Bicudo HEMC, Azeredo-Oliveira MTV, 2006. Meiosis aspects and nucleolar activity in Triatoma vitticeps (Triatominae, Heteroptera). Genetica 126: 141151.

    • Search Google Scholar
    • Export Citation
  • 9.

    Morielle-Souza A, Oliveira MTVA, 2007. Differential characterization of holocentric chromosomes in triatomines (Heteroptera, Triatominae) using different staining techniques and fluorescent in situ hybridization. Genet Mol Res 6: 713720.

    • Search Google Scholar
    • Export Citation
  • 10.

    Bardella VB, Gaeta ML, Vanzela ALL, Azeredo-Oliveira MTV, 2010. Chromosomal location of heterochromatin and 45S rDNA sites in four South American triatomines (Heteroptera: Reduviidae). Compar Cytogen 4: 141149.

    • Search Google Scholar
    • Export Citation
  • 11.

    Panzera F, Ferreiro MJ, Pita S, Calleros L, Pérez R, Basmadjián Y, Guevara Y, Brenière SF, Panzera Y, 2014. Evolutionary and dispersal history of Triatoma infestans, main vector of Chagas disease, by chromosomal markers. Inf Gen Evo 27: 105113.

    • Search Google Scholar
    • Export Citation
  • 12.

    Pita S, Panzera F, Ferrandis I, Galvão C, Gómez-Palacio A, Panzera Y, 2013. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes. Mem Inst Oswaldo Cruz 108: 376382.

    • Search Google Scholar
    • Export Citation
  • 13.

    Pita S, Panzera F, Mora P, Vela J, Palomeque T, Lorite P, 2016. The presence of the ancestral insect telomeric motif in kissing bugs (Triatominae) rules out the hypothesis of its loss in evolutionarily advanced Heteroptera (Cimicomorpha). Comp Cyotgenet 10: 427437.

    • Search Google Scholar
    • Export Citation
  • 14.

    Dujardin JP, Thi KP, Xuan LT, Panzera F, Pita S, Schofield CJ, 2015. Epidemiological status of kissing-bugs in south east Asia: a preliminary assessment. Acta Trop 151: 142149.

    • Search Google Scholar
    • Export Citation
  • 15.

    Schofield CJ, Galvão C, 2009. Classification, evolution, and species groups within the Triatominae. Acta Trop 110: 88100.

  • 16.

    Alevi KCC, Oliveira J, Azeredo-Oliveira MTV, Rosa JA, 2017. Triatoma vitticeps subcomplex (Hemiptera, Reduviidae, Triatominae): a new grouping of Chagas disease vectors from South America. Parasit Vectors 10: 180186.

    • Search Google Scholar
    • Export Citation
  • 17.

    Mason JM, Randall TA, Frydrychová RC, 2016. Telomerase lost? Chromosoma 125: 6573.

  • 18.

    Pita S, Panzera F, Sánchez A, Panzera Y, Palomeque T, Lorite P, 2014. Distribution and evolution of repeated sequences in genomes of Triatominae (Hemiptera-Reduviidae) inferred from genomic in situ hybridization. PLoS One 9: e114298.

    • Search Google Scholar
    • Export Citation
  • 19.

    Pita S, Lorite P, Vela J, Mora P, Palomeque T, Thi KP, Panzera F, 2017. Holocentric chromosome evolution in kissing bugs (Hemiptera: Reduviidae: Triatominae): diversification of repeated sequences. Parasit Vectors 10: 410.

    • Search Google Scholar
    • Export Citation
  • 20.

    Pita S, Mora P, Vela J, Palomeque T, Sánchez A, Panzera F, Lorite P, 2018. Comparative analysis of repetitive DNA between the main vectors of chagas disease: Triatoma infestans and Rhodnius prolixus. Int J Mol Sci 19: 1277.

    • Search Google Scholar
    • Export Citation
  • 21.

    Ferree PM, Prasad S, 2012. How can satellite DNA divergence cause reproductive isolation? Let us count the chromosomal ways. Genet Res Int 2012: 111.

    • Search Google Scholar
    • Export Citation
  • 22.

    Plohl M, Meštrović N, Mravinac B, 2012. Satellite DNA evolution. Gen Dyn 7: 126152.

  • 23.

    Garcia BA, Powell JR, 1998. Phylogeny of species of Triatoma (Hemiptera: Reduviidae) based on mitochondrial DNA sequences. J Med Entomol 35: 232238.

    • Search Google Scholar
    • Export Citation
  • 24.

    Lyman DF, Monteiro FA, Escalante AA, Cordon-Rosales C, Wesson DM, Dujardin JP, Beard CB, 1999. Mitochondrial DNA sequence variation among triatomine vectors of Chagas’ disease. Am J Trop Med Hyg 60: 377386.

    • Search Google Scholar
    • Export Citation
  • 25.

    Monteiro FA, Wesson DM, Dotson EM, Schofield CJ, Beard CB, 2000. Phylogeny and molecular taxonomy of the Rhodniini derived from mitochondrial and nuclear DNA sequences. Am J Trop Med Hyg 62: 460465.

    • Search Google Scholar
    • Export Citation
  • 26.

    Dotson EM, Beard C, 2001. Sequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata. Ins Mol Biol 10: 205215.

    • Search Google Scholar
    • Export Citation
  • 27.

    Castro MRJ, Goubert C, Carareto CMA, Monteiro FA, Vieira C, 2020. Homology-free detection of transposable elements unveils their dynamics in three ecologically distinct Rhodnius species. Genes 11: 114.

    • Search Google Scholar
    • Export Citation
  • 28.

    Pita S, Panzera F, Vela J, Mora P, Palomeque T, Lorite P, 2017. Complete mitochondrial genome of Triatoma infestans (Hemiptera, Reduviidae, Triatominae), main vector of Chagas disease. Infect Gen Evol 54: 158163.

    • Search Google Scholar
    • Export Citation
  • 29.

    Dong L, Ma X, Wang M, Zhu D, Feng Y, Zhang Y, Wang J, 2018. Complete mitochondrial genome of the Chagas disease vector, Triatoma rubrofasciata. Korean J Parasit 56: 515519.

    • Search Google Scholar
    • Export Citation
  • 30.

    ZhaoY, Jiang M, Wu Y, Song F, Cai W, Li H, 2019. Mitochondrial genomes of three kissing bugs (Reduviidae: triatominae) and their phylogenetic implications. Int J Biol Macromol 134: 3642.

    • Search Google Scholar
    • Export Citation
  • 31.

    Liu Q, Guo Y, Zhang Y, Hu W, Li Y, Zhu D, Zhou Z, Wu J, Chen N, Zhou XN, 2019. A chromosomal-level genome assembly for the insect vector for Chagas disease, Triatoma rubrofasciata. Giga Sci 8: giz089.

    • Search Google Scholar
    • Export Citation
  • 32.

    Henriques BS, Gomes B, da Costa SG, Moraes CS, Mesquita RD, Dillon VM, Garcia ES, Azambuja P, Dillon RJ, Genta FA, 2017. Genome wide mapping of peptidases in Rhodnius prolixus: identification of protease gene duplications, horizontally transferred proteases and analysis of peptidase a1 structures, with considerations on their role in the evolution of hematophagy in triatominae. Front Physiol 8: 122.

    • Search Google Scholar
    • Export Citation
  • 33.

    Dillon RJ, Dillon VM, 2004. The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49: 7192.

 

 

 

 

Omics Tools Applied to the Study of Chagas Disease Vectors: Cytogenomics and Genomics

View More View Less
  • 1 Departamento de Física, Instituto de Biociências Letras e Ciências Exatas, Centro Multiusuário de Inovação Biomolecular, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), São José do Rio Preto, Brazil;
  • 2 Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Laboratório de Parasitologia, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Araraquara, Brazil

Abstract.

Chagas disease is an illness caused by the protozoan Trypanosoma cruzi that is distributed in 21 countries of Latin America. The main way of transmission of T. cruzi is through the feces of triatomines infected with the parasite. With technological advances came new technologies called omics. In the pre-genomic era, the omics science was based on cytogenomic studies of triatomines. With the Rhodnius prolixus genome sequencing project, new omics tools were applied to understand the organism at a systemic level and not just from a genomic point of view. Thus, the present review aims to put together the cytogenomic and genomic information available in the literature for Chagas disease vectors. Here, we review all studies related to cytogenomics and genomics of Chagas disease vectors, contributing to the direction of further research with these insect vectors, because it was evident that most studies focus on cytogenomic knowledge of the species. Given the importance of genomic studies, which contributed to the knowledge of taxonomy, systematics, as well as the vector’s biology, the need to apply these techniques in other genera and species of Triatominae subfamily is emphasized.

Author Notes

Address correspondence to Kelly Cristine Borsatto, Departamento de Física, Centro Multiusuário de Inovação Biomolecular, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, Brazil. E-mail: kellyborsatto@gmail.com

Financial support: This work was financed by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Process number 2018/25458–3) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) - Finance Code 001.

Authors’ addresses: Kelly Cristine Borsatto, Monika Aparecida Coronado, and Raghuvir Krishnaswamy Arni, Departamento de Física, Instituto de Biociências Letras e Ciências Exatas, Centro Multiusuário de Inovação Biomolecular, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), São José do Rio Preto, Brazil, E-mails: kellyborsatto@gmail.com, monikacoronado@gmail.com, and raghuvir.arni@unesp.br. Kaio Cesar Chaboli Alevi, Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Laboratório de Parasitologia, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Araraquara, Brazil, E-mail: kaiochaboli@hotmail.com.

Save