• 1.

    World Health Organization, 2017. Vector-Borne Diseases. Geneva, Switzerland: WHO. Available at: http://www.who.int/fr/news-room/fact-sheets/detail/vector-borne-diseases. Accessed October 30, 2019.

    • Search Google Scholar
    • Export Citation
  • 2.

    Institut Louis-Malardé, 2019. Fiche-Thematique-Moustique-1.pdf. Available at: https://www.ilm.pf/wp-content/uploads/2019/11/Fiche-thematique-moustique-1.pdf. Accessed March 18, 2020.

    • Search Google Scholar
    • Export Citation
  • 3.

    Musso D, Rodriguez-Morales AJ, Levi JE, Cao-Lormeau VM, Gubler DJ, 2018. Unexpected outbreaks of arbovirus infections: lessons learned from the Pacific and tropical America. Lancet Infect Dis 18: e355e361.

    • Search Google Scholar
    • Export Citation
  • 4.

    Cao-Lormeau VM, Roche C, Aubry M, Teissier A, Lastere S, Daudens E, Mallet H-P, Musso D, Aaskov J, 2011. Recent emergence of dengue virus serotype 4 in French Polynesia results from multiple introductions from other south Pacific islands. PLoS One 6: e29555.

    • Search Google Scholar
    • Export Citation
  • 5.

    Cao-Lormeau VM, Roche C, Musso D, Mallet HP, Dalipanda T, Dofai A, Nogareda F, Nilles EJ, Aaskov J, 2014. Dengue virus type 3, south Pacific islands, 2013. Emerg Infect Dis 20: 10341036.

    • Search Google Scholar
    • Export Citation
  • 6.

    Aubry M 2015. Chikungunya outbreak, French Polynesia, 2014. Emerg Infect Dis 21: 724726.

  • 7.

    Musso D 2018. Zika virus in French Polynesia 2013–14: anatomy of a completed outbreak. Lancet Infect Dis 18: e172e182.

  • 8.

    Dupon JF, Bonvallot J, Vigneron E, 1993. Atlas de la Polynésie française. Paris, France: Editions de l’ORSTOM.

  • 9.

    Guillaumot L, 2005. Arboviruses and their vectors in the Pacific--status report. Pac Health Dialog 12: 4552.

  • 10.

    Richard V, Paoaafaite T, Cao-Lormeau VM, 2016. Vector competence of French polynesian Aedes aegypti and Aedes polynesiensis for zika virus. PLoS Negl Trop Dis 10: e0005024.

    • Search Google Scholar
    • Export Citation
  • 11.

    Richard V, Cao-Lormeau VM, 2019. Mosquito vectors of arboviruses in French Polynesia. New Microbes New Infect 31: 100569.

  • 12.

    Belkin JN, 1962. The Mosquitoes of the South Pacific: (Diptera, Culicidae). Oakland, CA: University of California Press.

  • 13.

    World Health Organization, 2003. Entomologie du paludisme et contrôle des vecteurs. Geneva, Switzerland: WHO. Available at: https://apps.who.int/iris/bitstream/handle/10665/68376/WHO_CDS_CPE_SMT_2002.18_Rev.1_PartieI.pdf;jsessionid=C510CBC98BA49D9EBD008017E9A41AC8?sequence=1. Accessed August 7, 2019.

    • Search Google Scholar
    • Export Citation
  • 14.

    Hervy JP, Le Goff G, Geoffroy B, Hervé J-P, Manga L, Brunhes J, 1998. The Anopheline Mosquitoes of the Afrotropical Region: An Identification and Training Software. Paris, France: ORSTOM. Available at: http://www.documentation.ird.fr/hor/fdi:010014161. Accessed August 7, 2019.

    • Search Google Scholar
    • Export Citation
  • 15.

    Kent RJ, Deus S, Williams M, Savage HM, 2010. Development of a multiplexed polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay to identify common members of the subgenera Culex (Culex) and Culex (phenacomyia) in Guatemala. Am J Trop Med Hyg 83: 285291.

    • Search Google Scholar
    • Export Citation
  • 16.

    Laroche M 2017. Medical entomology: a reemerging field of research to better understand vector-borne infectious diseases. Clin Infect Dis 65: S30S38.

    • Search Google Scholar
    • Export Citation
  • 17.

    Higa Y, Toma T, Tsuda Y, Miyagi I, 2010. A multiplex PCR-based molecular identification of five morphologically related, medically important subgenus Stegomyia mosquitoes from the genus Aedes (Diptera: Culicidae) found in the Ryukyu Archipelago, Japan. Jpn J Infect Dis 63: 312316.

    • Search Google Scholar
    • Export Citation
  • 18.

    Lv J 2014. Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida). Parasit Vectors 7: 93.

    • Search Google Scholar
    • Export Citation
  • 19.

    Yssouf A, Almeras L, Raoult D, Parola P, 2016. Emerging tools for identification of arthropod vectors. Future Microbiol 11: 549566.

  • 20.

    Yssouf A 2013. Matrix-assisted laser desorption ionization--time of flight mass spectrometry: an emerging tool for the rapid identification of mosquito vectors. PLoS One 8: e72380.

    • Search Google Scholar
    • Export Citation
  • 21.

    Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D, 2010. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 5: 17331754.

    • Search Google Scholar
    • Export Citation
  • 22.

    Tandina F, Almeras L, Koné AK, Doumbo OK, Raoult D, Parola P, 2016. Use of MALDI-TOF MS and culturomics to identify mosquitoes and their midgut microbiota. Parasit Vectors 9: 945.

    • Search Google Scholar
    • Export Citation
  • 23.

    Raharimalala FN, Andrianinarivomanana TM, Rakotondrasoa A, Collard JM, Boyer S, 2017. Usefulness and accuracy of MALDI-TOF mass spectrometry as a supplementary tool to identify mosquito vector species and to invest in development of international database. Med Vet Entomol 31: 289298.

    • Search Google Scholar
    • Export Citation
  • 24.

    Mewara A, Sharma M, Kaura T, Zaman K, Yadav R, Sehgal R, 2018. Rapid identification of medically important mosquitoes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Parasit Vectors 11: 281.

    • Search Google Scholar
    • Export Citation
  • 25.

    Yssouf A, Socolovschi C, Leulmi H, Kernif T, Bitam I, Audoly G, Almeras L, Raoult D, Parola P, 2014. Identification of flea species using MALDI-TOF/MS. Comp Immunol Microbiol Infect Dis 37: 153157.

    • Search Google Scholar
    • Export Citation
  • 26.

    Karger A, Kampen H, Bettin B, Dautel H, Ziller M, Hoffmann B, Süss J, Klaus C, 2012. Species determination and characterization of developmental stages of ticks by whole-animal matrix-assisted laser desorption/ionization mass spectrometry. Ticks Tick Borne Dis 3: 7889.

    • Search Google Scholar
    • Export Citation
  • 27.

    Yssouf A, Flaudrops C, Drali R, Kernif T, Socolovschi C, Berenger JM, Raoult D, Parola P, 2013. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of tick vectors. J Clin Microbiol 51: 522528.

    • Search Google Scholar
    • Export Citation
  • 28.

    Diarra AZ, Almeras L, Laroche M, Berenger J-M, Koné AK, Bocoum Z, Dabo A, Doumbo O, Raoult D, Parola P, 2017. Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali. PLoS Negl Trop Dis 11: e0005762.

    • Search Google Scholar
    • Export Citation
  • 29.

    Mathis A 2015. Identification of Phlebotomine sand flies using one MALDI-TOF MS reference database and two mass spectrometer systems. Parasit Vectors 8: 266.

    • Search Google Scholar
    • Export Citation
  • 30.

    Halada P, Hlavackova K, Risueño J, Berriatua E, Volf P, Dvorak V, 2018. Effect of trapping method on species identification of phlebotomine sandflies by MALDI-TOF MS protein profiling. Med Vet Entomol 32: 388392.

    • Search Google Scholar
    • Export Citation
  • 31.

    Hoppenheit A, Murugaiyan J, Bauer B, Steuber S, Clausen PH, Roesler U, 2013. Identification of Tsetse (Glossina spp.) using matrix-assisted laser desorption/ionisation time of flight mass spectrometry. PLoS Negl Trop Dis. 7: e2305.

    • Search Google Scholar
    • Export Citation
  • 32.

    Kaufmann C, Schaffner F, Ziegler D, Pflüger V, Mathis A, 2012. Identification of field-caught Culicoides biting midges using matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasitology 139: 248258.

    • Search Google Scholar
    • Export Citation
  • 33.

    Sambou M 2015. Comparison of matrix-assisted laser desorption ionization-time of flight mass spectrometry and molecular biology techniques for identification of Culicoides (Diptera: ceratopogonidae) biting midges in Senegal. J Clin Microbiol 53: 410418.

    • Search Google Scholar
    • Export Citation
  • 34.

    Lafri I, El Hamzaoui B, Bitam I, Leulmi H, Lalout R, Mediannikov O, Chergui M, Karakellah M, Raoult D, Parola P, 2017. Detection of relapsing fever Borrelia spp., Bartonella spp. and Anaplasmataceae bacteria in argasid ticks in Algeria. PLoS Negl Trop Dis 11: e0006064.

    • Search Google Scholar
    • Export Citation
  • 35.

    Laroche M, Bérenger JM, Gazelle G, Blanchet D, Raoult D, Parola P, 2018. MALDI-TOF MS protein profiling for the rapid identification of Chagas disease triatomine vectors and application to the triatomine fauna of French Guiana. Parasitology 145: 665675.

    • Search Google Scholar
    • Export Citation
  • 36.

    Plichart C, Legrand AM, 2005. Detection and characterization of Wolbachia infections in Wuchereria bancrofti (Spirurida: Onchocercidae) var. pacifica and Aedes (Stegomyia) polynesiensis (Diptera: Culicidae). Am J Trop Med Hyg 73: 354358.

    • Search Google Scholar
    • Export Citation
  • 37.

    Grjébine A, 1966. Insectes Diptères Culicidae Anophelinae. Paris, France: ORSTOM. Available at: http://www.documentation.ird.fr/hor/fdi:11315. Accessed August 9, 2019.

    • Search Google Scholar
    • Export Citation
  • 38.

    Niare S, Berenger JM, Dieme C, Doumbo O, Raoult D, Parola P, Almeras L, 2016. Identification of blood meal sources in the main African malaria mosquito vector by MALDI-TOF MS. Malar J 15: 87.

    • Search Google Scholar
    • Export Citation
  • 39.

    Nebbak A, Willcox AC, Bitam I, Raoult D, Parola P, Almeras L, 2016. Standardization of sample homogenization for mosquito identification using an innovative proteomic tool based on protein profiling. Proteomics 16: 31483160.

    • Search Google Scholar
    • Export Citation
  • 40.

    Laroche M, Almeras L, Pecchi E, Bechah Y, Raoult D, Viola A, Parola P, 2017. MALDI-TOF MS as an innovative tool for detection of Plasmodium parasites in Anopheles mosquitoes. Malar J 16: 5.

    • Search Google Scholar
    • Export Citation
  • 41.

    Diarra AZ, Laroche M, Berger F, Parola P, 2019. Use of MALDI-TOF MS for the identification of Chad mosquitoes and the origin of their blood meal. Am J Trop Med Hyg 100: 4753.

    • Search Google Scholar
    • Export Citation
  • 42.

    Benkacimi L, Gazelle G, El Hamzaoui B, Bérenger JM, Parola P, Laroche M, 2020. MALDI-TOF MS identification of Cimex lectularius and Cimex hemipterus bedbugs. Infect Genet Evol 85: 104536.

    • Search Google Scholar
    • Export Citation
  • 43.

    Smith JL, Fonseca DM, 2004. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg 70: 339345.

    • Search Google Scholar
    • Export Citation
  • 44.

    Tandina F, Niaré S, Laroche M, Koné AK, Diarra AZ, Ongoiba A, Berenger JM, Doumbo OK, Raoult D, Parola P, 2018. Using MALDI-TOF MS to identify mosquitoes collected in Mali and their blood meals. Parasitology 145: 11701182.

    • Search Google Scholar
    • Export Citation
  • 45.

    El Hamzaoui B, Laroche M, Parola P, 2019. Detection of Bartonella spp. in Cimex lectularius by MALDI-TOF MS. Comp Immunol Microbiol Infect Dis 64: 130137.

    • Search Google Scholar
    • Export Citation
  • 46.

    Lawrence AL, Batovska J, Webb CE, Lynch SE, Blacket MJ, Šlapeta J, Parola P, Laroche M, 2019. Accurate identification of Australian mosquitoes using protein profiling. Parasitology 146: 462471.

    • Search Google Scholar
    • Export Citation
  • 47.

    Normand AC 2017. Validation of a new web application for identification of fungi by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 55: 26612670.

    • Search Google Scholar
    • Export Citation
  • 48.

    Centers for Disease Control and Prevention, 2018. MicrobNet. Available at: https://www.cdc.gov/microbenet/index.html. Accessed October 15, 2020.

    • Search Google Scholar
    • Export Citation
  • 49.

    Dvorak V, Halada P, Hlavackova K, Dokianakis E, Antoniou M, Volf P, 2014. Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasit Vectors 7: 21.

    • Search Google Scholar
    • Export Citation
  • 50.

    Carnevale P, Robert V, 2009. Les anophèles: Biologie, transmission du Plasmodium et lutte antivectorielle. Paris, France: IRD Éditions.

  • 51.

    Mouchet J, Carnevale P, Coosemans M, Jul J, 2004. Biodiversité du paludisme dans le monde. Paris, France: John libbey eurotext, 1.

  • 52.

    Raikhel AS, Kokoza VA, Zhu J, Martin D, Wang SF, Li C, Sun G, Ahmed A, Dittmer N, Attardo G, 2002. Molecular biology of mosquito vitellogenesis: from basic studies to genetic engineering of antipathogen immunity. Insect Biochem Mol Biol 32: 12751286.

    • Search Google Scholar
    • Export Citation

 

 

 

 

Performance of MALDI-TOF Mass Spectrometry to Determine the Sex of Mosquitoes and Identify Specific Colonies from French Polynesia

View More View Less
  • 1 Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France;
  • 2 IHU Méditerranée Infection, Marseille, France;
  • 3 Campus International IRD-UCAD de l’IRD, Dakar, Senegal;
  • 4 Medical Entomology Laboratory, Institut Louis Malardé, Tahiti, French Polynesia;
  • 5 SELAS Eurofins Labazur Guyane, Cayenne, French Guiana

ABSTRACT

Mosquitoes are the main arthropod vectors of human pathogens. The current methods for mosquito identification include morphological and molecular methods. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), now routinely used for bacterial identification, has recently emerged in the field of entomology. The aim of this study was to use MALDI-TOF MS to identify mosquito colonies from French Polynesia. Five hundred specimens from French Polynesia belonging to three species, Aedes aegypti, Aedes polynesiensis, and Culex quinquefasciatus, were included in the study. Testing the legs of these mosquitoes by MALDI-TOF MS revealed a 100% correct identification of all specimens at the species level. The MALDI-TOF MS profiles obtained allowed differentiation of male from female mosquitoes and the specific identification of female mosquito colonies of the same species but different geographic origin.

    • Supplemental Materials (DOCX 22.17 KB)
    • Supplementary Materials
    • Supplementary Materials

Author Notes

Address correspondence to Philippe Parola, VITROME, IHU Méditerranée Infection, 19-21 Blvd., Jean Moulin, Marseille 13005, France. E-mail: philippe.parola@univ-amu.fr

Financial support: This study was supported by the Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, the National Research Agency under the program « Investissements d’avenir », reference ANR-10-IAHU-03, the Région Provence Alpes Côte d’Azur, and European funding FEDER PRIMI.

Authors’ addresses: Fatou Kiné Fall, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France, IHU Méditerranée Infection, Marseille, France, and Campus International IRD-UCAD de l’IRD, Dakar, Senegal, E-mail: fakifa22@hotmail.fr. Maureen Laroche and Philippe Parola, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France, and IHU Méditerranée Infection, Marseille, France, E-mails: mlaroche@kemri-wellcome.org and philippe.parola@univ-amu.fr. Hervé Bossin, Medical Entomology Laboratory, Institut Louis Malardé, Papeete, Tahiti, French Polynesia, E-mail: hbossin@ilm.pf. Didier Musso, Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France, and SELAS Eurofins Labazur Guyane, Cayenne, French Guiana, E-mail: dmusso12345@gmail.com.

Save