Individual and Spatial Risk of Dengue Virus Infection in Puerto Maldonado, Peru

Gabriela Salmón-Mulanovich U.S. Naval Medical Research Unit No. 6, Lima, Peru;
Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland;

Search for other papers by Gabriela Salmón-Mulanovich in
Current site
Google Scholar
PubMed
Close
,
David L. Blazes U.S. Naval Medical Research Unit No. 6, Lima, Peru;
Global Health Division, Bill & Melinda Gates Foundation, Seattle, Washington;

Search for other papers by David L. Blazes in
Current site
Google Scholar
PubMed
Close
,
M. Claudia Guezala V U.S. Naval Medical Research Unit No. 6, Lima, Peru;

Search for other papers by M. Claudia Guezala V in
Current site
Google Scholar
PubMed
Close
,
Zonia Rios U.S. Naval Medical Research Unit No. 6, Lima, Peru;

Search for other papers by Zonia Rios in
Current site
Google Scholar
PubMed
Close
,
Angelica Espinoza U.S. Naval Medical Research Unit No. 6, Lima, Peru;

Search for other papers by Angelica Espinoza in
Current site
Google Scholar
PubMed
Close
,
Carolina Guevara U.S. Naval Medical Research Unit No. 6, Lima, Peru;

Search for other papers by Carolina Guevara in
Current site
Google Scholar
PubMed
Close
,
Andrés G. Lescano U.S. Naval Medical Research Unit No. 6, Lima, Peru;
Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru;

Search for other papers by Andrés G. Lescano in
Current site
Google Scholar
PubMed
Close
,
Joel M. Montgomery U.S. Naval Medical Research Unit No. 6, Lima, Peru;
Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, Georgia;

Search for other papers by Joel M. Montgomery in
Current site
Google Scholar
PubMed
Close
,
Daniel G. Bausch U.S. Naval Medical Research Unit No. 6, Lima, Peru;
Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana;

Search for other papers by Daniel G. Bausch in
Current site
Google Scholar
PubMed
Close
, and
William K. Pan Duke Global Health Institute and Nicholas School of Environment, Duke University, Durham, North Carolina

Search for other papers by William K. Pan in
Current site
Google Scholar
PubMed
Close
Restricted access

Dengue virus (DENV) affects more than 100 countries worldwide. Dengue virus infection has been increasing in the southern Peruvian Amazon city of Puerto Maldonado since 2000. We designed this study to describe the prevalence of past DENV infection and to evaluate risk factors. In 2012, we conducted a cross-sectional serosurvey and administered a knowledge, attitudes, and practices (KAP) questionnaire to members of randomly selected households. Sera were screened for antibodies to DENV by enzyme-linked immunosorbent assay and confirmed by plaque reduction neutralization test. We created indices for KAP (KAPi). We used SaTScan (Martin Kulldorff with Information Management Services Inc., Boston, MA) to detect clustering and created a multivariate model introducing the distance of households to potential vector and infection sources. A total of 505 participants from 307 households provided a blood sample and completed a questionnaire. Fifty-four percent of participants (95% confidence interval [CI]: 49.6; 58.5) had neutralizing antibodies to DENV. Higher values of KAPi were positively associated with having DENV antibodies in the multivariate analysis (odds ratio [ORII]: 1.6, 95% CI: 0.6, 2.4; ORIII: 2.7, 95% CI: 1.3, 5.5; and ORIV: 2.4, 95% CI: 1.2, 5.0). Older groups had lower chances of having been exposed to DENV than younger people (OR20–30: 0.5, 95% CI: 0.2, 0.8; OR31–45: 0.5, 95% CI: 0.3, 0.9; and OR>45: 0.6, 95% CI: 0.3, 1.3). Multivariate data analysis from the 270 households with location information showed male gender to have lower risk of past DENV infection (OR: 0.6, 95% CI: 0.4, 0.9). We conclude that risk of DENV infection in Puerto Maldonado is related to gender, age of the population, and location.

    • Supplemental Materials (PDF 901 KB)

Author Notes

Address correspondence to Gabriela Salmón-Mulanovich, U.S. Naval Medical Research Unit No. 6, Manuel Tovar 647, Lima 18, Peru. E-mail: gsalmonm.veid@gmail.com

Financial support: The study was founded by the National Institute of Health—Fogarty International Center training grant D43-TW007393 and the U.S. DoD Global Emerging Infections Surveillance and Response System.

Copyright statement: Some authors are military service members and employees of the U.S. Government. This work was prepared as part of their official duties. Title 17 U.S.C. § 105 provides that “Copyright protection under this title is not available for any work of the United States Government.” Title 17 U.S.C. § 101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person’s official duties.

Human subjects’ protection statement: The Naval Medical Research Unit-6 (NAMRU-6) participation was under Protocol NMRCD.2011.0003 at NAMRU-6 and #0367 at Johns Hopkins Bloomberg School of Public Health in compliance with all applicable federal regulations governing the protection of human subjects.

Authors’ addresses: Gabriela Salmón-Mulanovich, U.S. Naval Medical Research Unit No. 6, Lima, Peru, and Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, E-mail: gsalmonm.veid@gmail.com. David L. Blazes, U.S. Naval Medical Research Unit No. 6, Lima, Peru, and Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, E-mail: da_blazes@hotmail.com. M. Claudia Guezala V, Zonia Rios, Angelica Espinoza, and Carolina Guevara, U.S. Naval Medical Research Unit No. 6, Lima, Peru, E-mail: maria.c.guezala.fn@mail.mil, zonia.rios.fn@mail.mil, angelica.espinoza.fn@mail.mil, and carolina.guevara.fn@mail.mil. Andrés G. Lescano, Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru, E-mail: willy.lescano@upch.pe. Joel M. Montgomery, U.S. Naval Medical Research Unit No. 6, Lima, Peru, and Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, GA, E-mail: ztq9@cdc.gov. Daniel G. Bausch, Public Health England/London School of Hygiene and Tropical Medicine, London, United Kingdom, and Tulane School of Public Health and Tropical Medicine, New Orleans, LA, E-mail: daniel.bausch@phe.gov.uk. Willam K. Pan, Duke Global Health Institute and Nicholas School of Environment, Duke University, Durham, NC, E-mail: william.pan@duke.edu.

  • 1.

    Gubler DJ, 1998. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11: 480496.

  • 2.

    Guzman A, Istúriz RE, 2010. Update on the global spread of dengue. Int J Antimicrob Agents 36 (Suppl 1): S40S42.

  • 3.

    Guzmán MG, Kouri G, 2002. Dengue: an update Lancet Infect Dis 2: 3342.

  • 4.

    Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI, 2012. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6: e1760.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    WHO. Dengue and Severe Dengue. Geneva, Switzerland: WHO. Available at: http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed December 27, 2017.

  • 6.

    Monath TP, 1994. Dengue: the risk to developed and developing countries. Proc Natl Acad Sci USA 91: 23952400.

  • 7.

    Barrera R, Amador M, Diaz A, Smith J, Munoz-Jordan JL, Rosario Y, 2008. Unusual productivity of Aedes aegypti in septic tanks and its implications for dengue control. Med Vet Entomol 22: 6269.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Harrington LC et al. 2005. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg 72: 209220.

  • 9.

    Lloyd LS, Winch P, Ortega-Canto J, Kendall C, 1992. Results of a community-based Aedes aegypti control program in Merida, Yucatan, Mexico. Am J Trop Med Hyg 46: 635642.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Leontsini E, Gil E, Kendall C, Clark GG, 1993. Effect of a community-based Aedes aegypti control programme on mosquito larval production sites in El Progreso, Honduras. Trans R Soc Trop Med Hyg 87: 267271.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Winch PJ, Leontsini E, Rigau-Pérez JG, Ruiz-Pérez M, Clark GG, Gubler DJ, 2002. Community-based dengue prevention programs in Puerto Rico: impact on knowledge, behavior, and residential mosquito infestation. Am J Trop Med Hyg 67: 363370.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Vanlerberghe V, Toledo ME, Rodríguez M, Gomez D, Baly A, Benitez JR, Van der Stuyft P, 2009. Community involvement in dengue vector control: cluster randomised trial. BMJ 338: b1959.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ault SK, 1994. Environmental management: a re-emerging vector control strategy. Am J Trop Med Hyg 50 (Suppl 6): 3549.

  • 14.

    Escobar-Mesa J, Gómez-Dantés H, 2003. Determinants of dengue transmission in Veracruz: an ecological approach to its control [article in Spanish]. Salud Publica Mex 45: 4353.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Morrison AC et al. 2004. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. J Med Entomol 41: 11231142.

  • 16.

    Morrison AC et al. 2010. Epidemiology of dengue virus in Iquitos, Peru 1999 to 2005: interepidemic and epidemic patterns of transmission. PLoS Negl Trop Dis 4: e670.

  • 17.

    de Mattos Almeida MC, Caiaffa WT, Assunção RM, Proietti FA, 2007. Spatial vulnerability to dengue in a Brazilian urban area during a 7-year surveillance. J Urban Health 84: 334345.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    de Almeida AS, de Medronho RA, Valencia LIO, 2009. Análise espacial da dengue e o contexto socioeconômico no município do Rio de Janeiro, RJ. Rev Saúde Pública 43: 666673.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mondini A, Chiaravalloti-Neto F, 2008. Spatial correlation of incidence of dengue with socioeconomic, demographic and environmental variables in a Brazilian city. Sci Total Environ 393: 241248.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Tsuda Y, Suwonkerd W, Chawprom S, Prajakwong S, Takagi M, 2006. Different spatial distribution of Aedes aegypti and Aedes albopictus along an urban–rural gradient and the relating environmental factors examined in three villages in northern Thailand. J Am Mosq Control Assoc 22: 222228.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lagrotta MT, Silva Wda C, Souza-Santos R, 2008. Identification of key areas for Aedes aegypti control through geoprocessing in Nova Iguaçu, Rio de Janeiro state, Brazil. Cad SaÃode PÃoblica 24: 7080.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Morrison AC, Getis A, Santiago M, Rigau-Perez JG, Reiter P, 1998. Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991–1992. Am J Trop Med Hyg 58: 287298.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kuan G, Gordon A, Avilés W, Ortega O, Hammond SN, Elizondo D, Nuñez A, Coloma J, Balmaseda A, Harris E, 2009. The Nicaraguan pediatric dengue cohort study: study design, methods, use of information technology, and extension to other infectious diseases. Am J Epidemiol 170: 120129.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Ali M, Wagatsuma Y, Emch M, Breiman RF, 2003. Use of a geographic Information system for defining spatial risk for dengue transmission in Bangladesh: role for Aedes albopictus in an urban outbreak. Am J Trop Med Hyg 69: 634640.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    INEI, 2009. Perú: Migraciones Internas 1993–2003. Lima, Peru: Taller de la Oficina Técnica de la Difusión del INEI.

  • 26.

    Sociales INEI (Perú) DT de D e I 2008. Perfil Sociodemográfico Del Perú: Censos Nacionales 2007: XI de Población y VI de Vivienda. Lima, Peru: INEI.

  • 27.

    DIRESA Madre de Dios, 2006. Análisis de la Situación de Salud de Madre de Dios. Puerto Maldonado, Madre de Dios, Peru: Dirección de Epidemiología.

  • 28.

    DIRESA Madre de Dios, 2007. Análisis de la Situación de Salud de Madre de Dios. Puerto Maldonado, Madre de Dios, Peru: Dirección de Epidemiología.

  • 29.

    Palomino L, Mosqueira C, Kuroiwa J, Pérez Galleno A, Zerga A, 2008. Programa ciudades sostenibles, plan de acción 2007–2011: integración de los sectores público y privado. Rev Com Andino Para Prev Aten Desastres CAPRADE 3: 2832.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kuroiwa Huroich J, 2002. Mapa de Peligros de la Ciudad de Puerto Maldonado. Zerga Ocana A, ed. Tambopata, Madre de Dios, Peru: INDECI. Available at: http://bvpad.indeci.gob.pe/doc/estudios_CS/Region_Madre_de_Dios/tambopata/puertomaldonado.pdf. Accessed October 1, 2012.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Forshey BM et al. 2010. Arboviral etiologies of acute febrile illnesses in western South America, 2000–2007. PLoS Negl Trop Dis 4: e787.

  • 32.

    DIRESA, 2014. Boletín de Información Técnica. 2009. Puerto Maldonado, Madre de Dios, Peru: DIRESA.

  • 33.

    DIRESA Madre de Dios DIRESA Puno, 2013. Plan Macroregional Sur-Oriente de Lucha contra el Dengue.

  • 34.

    Morrison AC, Astete H, Chapilliquen F, Ramirez-Prada G, Diaz G, Getis A, Gray K, Scott TW. 2004. Evaluation of a sampling methodology for rapid assessment of Aedes aegypti infestation levels in Iquitos, Peru. J Med Entomol 41: 502510.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Morris SS, Carletto C, Hoddinott J, Christiaensen LJM, 2000. Validity of rapid estimates of household wealth and income for health surveys in rural Africa. J Epidemiol Community Health 54: 381.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kuno G, Gómez I, Gubler DJ, 1991. An ELISA procedure for the diagnosis of dengue infections. J Virol Methods 33: 101113.

  • 37.

    Mitchell A, 2009. Spatial Measurements and Statistics. Redlands, CA: ESRI Press.

  • 38.

    Waller LA, Gotway CA, 2004. Applied Spatial Statistics for Public Health Data. Hoboken, NJ: John Wiley & Sons.

  • 39.

    Kulldorff M, 2010. SaTScan-Software for the Spatial, Temporal, and Space-Time Scan Statistics. Boston, MA: Harv Med Sch Harv Pilgr Health Care.

  • 40.

    da Silva-Nunes M et al. 2008. Risk factors for dengue virus infection in rural Amazonia: population-based cross-sectional surveys. Am J Trop Med Hyg 79: 485494.

  • 41.

    Chowell G, Torre CA, Munayco-Escate C, Suárez-Ognio L, López-Cruz R, Hyman JM, Castillo-Chavez C, 2008. Spatial and temporal dynamics of dengue fever in Peru: 1994–2006. Epidemiol Infect 136: 16671677.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    COSIPLAN, 2012. Iniciativa para la Integración de la Infraestructura Regional Suramericana (IIRSA). Ficha del Proyecto: Pavimentación Iñapari–Puerto Maldonado–Inambari, Inambari–Juliaca/Inambari–Cusco. Eje Perú–Brasil–Bolivia. Available at: http://www.iirsa.org/proyectos/detalle_proyecto.aspx?h=319&x=9&idioma=ES. Accessed October 1, 2012.

    • PubMed
    • Export Citation
  • 43.

    Adams B, Kapan DD, 2009. Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics. PLoS One 4: e6763.

  • 44.

    Brunkard JM et al. 2007. Dengue fever seroprevalence and risk factors, Texas–Mexico border, 2004. Emerg Infect Dis 13: 14771483.

  • 45.

    Bartley LM, Carabin H, Vinh Chau N, Ho V, Luxemburger C, Hien TT, Garnett GP, Farrar J, 2002. Assessment of the factors associated with Flavivirus seroprevalence in a population in southern Vietnam. Epidemiol Infect 128: 213220.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Borjas GJ, Bronars SG, Trejo SJ, 1992. Assimilation and the earnings of young internal migrants. Rev Econ Stat 74: 170175.

  • 47.

    Favier C, Schmit D, Müller-Graf CD, Cazelles B, Degallier N, Mondet B, Dubois MA, 2005. Influence of spatial heterogeneity on an emerging infectious disease: the case of dengue epidemics. Proc Biol Sci 272: 11711177.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Faria NR et al. 2016. Zika virus in the Americas: early epidemiological and genetic findings. Science 352: 345.

  • 49.

    Itrat A, Khan A, Javaid S, Kamal M, Khan H, Javed S, Kalia S, Khan AH, Sethi MI, Jehan I, 2008. Knowledge, awareness and practices regarding dengue fever among the adult population of dengue hit cosmopolitan. PLOS One 3: e2620.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Van Benthem BH, Vanwambeke SO, Khantikul N, Burghoorn-Maas C, Panart K, Oskam L, Lambin EF, Somboon P, 2005. Spatial patterns of and risk factors for seropositivity for dengue infection. Am J Trop Med Hyg 72: 201208.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 1166 759 49
Full Text Views 882 20 4
PDF Downloads 405 20 3
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save