Livingstone FB, 1984. The Duffy blood groups, vivax malaria, and malaria selection in human populations: a review. Hum Biol 56: 413–425.
Miller LH, Mason SJ, Clyde DF, 1976. The resistance factor to Plasmodium vivax in blacks: the Duffy-blood-group genotype, FyFy. N Engl J Med 295: 302–304.
Tournamille C, Colin Y, Cartron JP, Van Kim CL, 1995. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy–negative individuals. Nat Genet 10: 224–228.
Hadley TJ, 1986. Invasion of erythrocytes by malaria parasites: a cellular and molecular overview. Annu Rev Microbiol 40: 451–477.
Miller LH, Mason SJ, Dvorak JA, McGinniss MH, Rothman IK, 1975. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 189: 561–563.
Ménard D et al. 2010. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci USA 107: 5967–5971.
Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, Hay SI, 2016. Global epidemiology of Plasmodium vivax. Am J Trop Med Hyg 95: 15–34.
Battle KE, Gething PW, Elyazar IRF, Moyes CL, Sinka ME, Howes RE, Guerra CA, Price RN, Baird KJ, Hay SI, 2012. The global public health significance of Plasmodium vivax. Adv Parasitol 80: 1–111.
Guerra CA et al. 2010. The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis 4: e774.
Liu W et al. 2014. African origin of the malaria parasite Plasmodium vivax. Nat Commun 5: 3346.
Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, Sharp PM, Hahn BH, 2016. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol 47: 87–97.
Prugnolle F et al. 2013. Diversity, host switching and evolution of Plasmodium vivax infecting African great apes. Proc Natl Acad Sci USA 110: 8123–8128.
Mendes C, Dias F, Figueiredo J, Mora VG, Cano J, de Sousa B, do Rosário VE, Benito A, Berzosa P, Arez AP, 2011. Duffy negative antigen is no longer a barrier to Plasmodium vivax—molecular evidences from the African west coast (Angola and Equatorial Guinea). PLoS Negl Trop Dis 5: e1192.
Poirier P et al. 2016. The hide and seek of Plasmodium vivax in west Africa: report from a large-scale study in Beninese asymptomatic subjects. Malar J 15: 570.
Motshoge T et al. 2016. Molecular evidence of high rates of asymptomatic P. vivax infection and very low P. falciparum malaria in Botswana. BMC Infect Dis 16: 520.
Ngassa Mbenda HG, Das A, 2014. Molecular evidence of Plasmodium vivax mono and mixed malaria parasite infections in Duffy-negative native Cameroonians. PLoS One 9: e103262.
Russo G et al. 2017. Molecular evidence of Plasmodium vivax infection in Duffy negative symptomatic individuals from Dschang, west Cameroon. Malar J 16: 74.
Woldearegai TG, Kremsner PG, Kun JFJ, Mordmüller B, 2013. Plasmodium vivax malaria in Duffy-negative individuals from Ethiopia. Trans R Soc Trop Med Hyg 107: 328–331.
Gunalan K, Lo E, Hostetler JB, Yewhalaw D, Mu J, Neafsey DE, Yan G, Miller LH, 2016. Role of Plasmodium vivax Duffy-binding protein 1 in invasion of Duffy-null Africans. Proc Natl Acad Sci USA 113: 6271–6276.
Ryan JR et al. 2006. Evidence for transmission of Plasmodium vivax among a Duffy antigen negative population in western Kenya. Am J Trop Med Hyg 75: 575–581.
Wurtz N et al. 2011. Vivax malaria in Mauritania includes infection of a Duffy-negative individual. Malar J 10: 336.
Abdelraheem MH, Albsheer MMA, Mohamed HS, Amin M, Mahdi Abdel Hamid M, 2016. Transmission of Plasmodium vivax in Duffy-negative individuals in central Sudan. Trans R Soc Trop Med Hyg 110: 258–260.
Zimmerman PA, 2017. Plasmodium vivax infection in Duffy-negative people in Africa. Am J Trop Med Hyg 97: 636–638.
Meshnick S, Janko M, Doctor S, Anderson O, Thwai K, Levitz L, Emch M, Mwandagalirwa K, Tshefu A, Ntuku H, 2015. Democratic Republic of the Congo Demographic Health Survey 2013–2014 Supplemental Malaria Report. Available at: http://dhsprogram.com/pubs/pdf/FR300/FR300.Mal.pdf. Accessed August 25, 2017.
Doctor SM et al. 2016. Malaria surveillance in the Democratic Republic of the Congo: comparison of microscopy, PCR, and rapid diagnostic test. Diagn Microbiol Infect Dis 85: 16–18.
Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE, 1995. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg 52: 565–568.
Doctor SM et al. 2016. Malaria surveillance in the Democratic Republic of the Congo: comparison of microscopy, PCR, and rapid diagnostic test. Diagn Microbiol Infect Dis 85: 16–18.
Doctor SM et al. 2016. Low prevalence of Plasmodium malariae and Plasmodium ovale mono-infections among children in the Democratic Republic of the Congo: a population-based, cross-sectional study. Malar J 15: 350.
Singh B, Bobogare A, Cox-Singh J, Snounou G, 1999. A genus-and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am J Trop Med Hyg 60: 687–692.
Veron V, Simon S, Carme B, 2009. Multiplex real-time PCR detection of P. falciparum, P. vivax and P. malariae in human blood samples. Exp Parasitol 121: 346–351.
Methodology DHS. The Demographic Health Survey Program. Available at: http://dhsprogram.com/What-We-Do/Survey-Types/DHS-Methodology.cfm. Accessed September 1, 2017.
Ministère du Plan et Suivi de la Mise en œuvre de la Révolution de la Modernité (MPSMRM), Ministère de la Santé Publique (MSP) et ICF International, 2014. Enquête Démographique et de Santé en République Démocratique du Congo 2013–2014. Rockville, MD: MPSMRM, MSP and ICF International.
Wickham H, 2017. Tidyverse: easily install and load ‘tidyverse’ packages. R Package Version. 1(1). Available at: https://tidyverse.tidyverse.org/. Accessed September 10, 2018.
R Core Team, 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org/. Accessed Septmeber 6, 2018.
The IUCN Red List of Threatened Species, IUCN, 2016. Available at: http://www.iucnredlist.org. Accessed April 21, 2018. Version 2016-1.
Abkallo HM et al. 2014. DNA from pre-erythrocytic stage malaria parasites is detectable by PCR in the faeces and blood of hosts. Int J Parasitol 44: 467–473.
Hupalo DN et al. 2016. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax. Nat Genet 48: 953–958.
Pearson RD et al. 2016. Genomic analysis of local variation and recent evolution in Plasmodium vivax. Nat Genet 48: 959–964.
Parobek CM et al. 2016. Selective sweep suggests transcriptional regulation may underlie Plasmodium vivax resilience to malaria control measures in Cambodia. Proc Natl Acad Sci USA 113: E8096–E8105.
Hester J, Chan ER, Menard D, Mercereau-Puijalon O, Barnwell J, Zimmerman PA, Serre D, 2013. De novo assembly of a field isolate genome reveals novel Plasmodium vivax erythrocyte invasion genes. PLoS Negl Trop Dis 7: e2569.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 4 | 4 | 4 |
Full Text Views | 600 | 201 | 2 |
PDF Downloads | 217 | 68 | 7 |
Although Plasmodium vivax has been assumed to be absent from sub-Saharan Africa because of the protective mutation conferring the Duffy-negative phenotype, recent evidence has suggested that P. vivax cases are prevalent in these regions. We selected 292 dried blood spots from children who participated in the 2013–2014 Demographic and Health Survey of the Democratic Republic of the Congo (DRC), to assess for P. vivax infection. Four P. vivax infections were identified by polymerase chain reaction, each in a geographically different survey cluster. Using these as index cases, we tested the remaining 73 samples from the four clusters. With this approach, 10 confirmed cases, three probable cases, and one possible case of P. vivax were identified. Among the 14 P. vivax cases, nine were coinfected with Plasmodium falciparum. All 14 individuals were confirmed to be Duffy-negative by sequencing for the single point mutation in the GATA motif that represses the expression of the Duffy antigen. This finding is consistent with a growing body of literature that suggests that P. vivax can infect Duffy-negative individuals in Africa. Future molecular and sequencing work is needed to understand the relationship of these isolates with other P. vivax samples from Asia and South America and discover variants linked to P. vivax virulence and erythrocyte invasion.
Financial support: This work was supported by the National Institutes of Health (grant numbers R21AI111108, R01TW010870, and R01AI107949) and National Science Foundation (BSC-1339949). Nicholas Ford Brazeau was supported by the Triangle Center for Evolutionary Medicine (TriCEM), which is supported by Duke University, University of North Carolina-Chapel Hill, North Carolina Central University, and North Carolina State Universities.
Authors’ addresses: Nicholas F. Brazeau, Amy Whitesell, Stephanie M. Doctor, and Steven R. Meshnick, Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, E-mails: nbrazeau@med.unc.edu, awhitese@live.unc.edu, stephanie.doctor@gmail.com, and meshnick@email.unc.edu. Corinna Keeler, Department of Geography, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, E-mail: cykeeler@live.unc.edu. Melchior K. Mwandagalirwa and Antoinette K. Tshefu, University of Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo, E-mails: mkashamuka@yahoo.com and antotshe@yahoo.com. Joris L. Likwela, Programme National de la Lutte Contre le Paludisme, Kinshasa, Democratic Republic of Congo, E-mail: jorislikwela@gmail.com. Jonathan J. Juliano, Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, E-mail: jonathan_juliano@med.unc.edu.