Imwong M et al. 2015. The epidemiology of subclinical malaria infections in south-east Asia: findings from cross-sectional surveys in Thailand–Myanmar border areas, Cambodia, and Vietnam. Malar J 14: 381.
Carrara VI et al. 2013. Malaria burden and artemisinin resistance in the mobile and migrant population on the Thai–Myanmar border, 1999–2011: an observational study. PLoS Med 10: e1001398.
Parker DM et al. 2015. Microgeography and molecular epidemiology of malaria at the Thailand–Myanmar border in the malaria pre-elimination phase. Malar J 14: 198.
Phyo AP et al. 2012. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379: 1960–1966.
Phyo AP et al. 2016. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai–Myanmar border (2003–2013): the role of parasite genetic factors. Clin Infect Dis 63: 784–791.
Thu AM, Phyo AP, Landier J, Parker DM, Nosten FH, 2017. Combating multidrug-resistant Plasmodium falciparum malaria. FEBS J 284: 2569–2578.
Landier J, Parker DM, Thu AM, Carrara VI, Lwin KM, Bonnington CA, Pukrittayakamee S, Delmas G, Nosten FH, 2016. The role of early detection and treatment in malaria elimination. Malar J 15: 363.
Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, Ghani A, Drakeley C, Gosling R, 2012. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med 9: e1001165.
Mbogo CM et al. 2003. Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast. Am J Trop Med Hyg 68: 734–742.
Imwong M, Nakeesathit S, Day NP, White NJ, 2011. A review of mixed malaria species infections in anopheline mosquitoes. Malar J 10: 253.
Kelly-Hope LA, McKenzie FE, 2009. The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa. Malar J 8: 19.
Cook J, Reid H, Iavro J, Kuwahata M, Taleo G, Clements A, McCarthy J, Vallely A, Drakeley C, 2010. Using serological measures to monitor changes in malaria transmission in Vanuatu. Malar J 9: 169.
Longley RJ et al. 2017. Asymptomatic Plasmodium vivax infections induce robust IgG responses to multiple blood-stage proteins in a low-transmission region of western Thailand. Malar J 16: 178.
Helb DA et al. 2015. Novel serologic biomarkers provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communities. Proc Natl Acad Sci U S A 112: E4438–E4447.
Drakeley CJ et al. 2005. Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci U S A 102: 5108–5113.
Ataíde R et al. 2017. Declining transmission and immunity to malaria and emerging artemisinin resistance in Thailand: a longitudinal study. J Infect Dis 216: 723–731.
Elliott SR, Fowkes FJ, Richards JS, Reiling L, Drew DR, Beeson JG, 2014. Research priorities for the development and implementation of serological tools for malaria surveillance. F1000Prime Rep 6: 100.
Doucoure S, Drame PM, 2015. Salivary biomarkers in the control of mosquito-borne diseases. Insects 6: 961–976.
Ya-Umphan P, Cerqueira D, Parker DM, Cottrell G, Poinsignon A, Remoue F, Brengues C, Chareonviriyaphap T, Nosten F, Corbel V, 2017. Use of an Anopheles salivary biomarker to assess malaria transmission risk along the Thailand–Myanmar border. J Infect Dis 215: 396–404.
Landier J et al. 2017. Safety and effectiveness of mass drug administration to accelerate elimination of artemisinin-resistant falciparum malaria: a pilot trial in four villages of eastern Myanmar. Wellcome Open Res 2: 81.
Imwong M, Hanchana S, Malleret B, Renia L, Day NP, Dondorp A, Nosten F, Snounou G, White NJ, 2014. High-throughput ultrasensitive molecular techniques for quantifying low-density malaria parasitemias. J Clin Microbiol 52: 3303–3309.
Poinsignon A et al. 2008. Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to Anopheles bites. PLoS One 3: e2472.
Poinsignon A, Remoue F, Rossignol M, Cornelie S, Courtin D, Grebaut P, Garcia A, Simondon F, 2008. Human IgG antibody response to glossina saliva: an epidemiologic marker of exposure to glossina bites. Am J Trop Med Hyg 78: 750–753.
Ambrosino E et al. 2010. A multiplex assay for the simultaneous detection of antibodies against 15 Plasmodium falciparum and Anopheles gambiae saliva antigens. Malar J 9: 317.
Kulldorff MaIMSI, Inc., 2009. SaTScan Version 9.1.1: Software for the Spatial and Space-Time Scan Statistics. Available at: http://www.satscan.org.
Kulldorf M, 1997. A spatial scan statistic. Commun Stat Theory Methods 26: 1481–1496.
Parker DM, Landier J, von Seidlein L, Dondorp A, White L, Hanboonkunupakarn B, Maude RJ, Nosten FH, 2016. Limitations of malaria reactive case detection in an area of low and unstable transmission on the Myanmar–Thailand border. Malar J 15: 571.
Biggs J et al. 2017. Serology reveals heterogeneity of Plasmodium falciparum transmission in northeastern South Africa: implications for malaria elimination. Malar J 16: 48.
Kerkhof K et al. 2016. Geographical patterns of malaria transmission based on serological markers for falciparum and vivax malaria in Ratanakiri, Cambodia. Malar J 15: 510.
White MT, Griffin JT, Akpogheneta O, Conway DJ, Koram KA, Riley EM, Ghani AC, 2014. Dynamics of the antibody response to Plasmodium falciparum infection in African children. J Infect Dis 210: 1115–1122.
Fowkes FJ et al. 2012. New insights into acquisition, boosting, and longevity of immunity to malaria in pregnant women. J Infect Dis 206: 1612–1621.
Nagao Y, Kimura-Sato M, Chavalitshewinkoon-Petmitr P, Thongrungkiat S, Wilairatana P, Ishida T, Tan-Ariya P, de Souza JB, Krudsood S, Looareesuwan S, 2008. Suppression of Plasmodium falciparum by serum collected from a case of Plasmodium vivax infection. Malar J 7: 113.
Kwansomboon N, Chaumeau V, Kittiphanakun P, Cerqueira D, Corbel V, Chareonviriyaphap T, 2017. Vector bionomics and malaria transmission along the Thailand–Myanmar border: a baseline entomological survey. J Vector Ecol 42: 84–93.
Sriwichai P, Samung Y, Sumruayphol S, Kiattibutr K, Kumpitak C, Payakkapol A, Kaewkungwal J, Yan G, Cui L, Sattabongkot J, 2016. Natural human Plasmodium infections in major Anopheles mosquitoes in western Thailand. Parasit Vectors 9: 17.
Londono-Renteria B et al. 2015. An. gambiae gSG6-P1 evaluation as a proxy for human-vector contact in the Americas: a pilot study. Parasit Vectors 8: 533.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 6 | 6 | 6 |
Full Text Views | 1313 | 266 | 2 |
PDF Downloads | 165 | 51 | 2 |
Timely identification and treatment of malaria transmission “hot spots” is essential to achieve malaria elimination. Here we investigate the relevance of using an Anopheles salivary biomarker to estimate Plasmodium falciparum malaria exposure risk along the Thailand–Myanmar border to guide malaria control. Between May 2013 and December 2014, > 9,000 blood samples collected in a cluster randomized control trial were screened with serological assays to measure the antibody responses to Anopheles salivary antigen (gSG6-P1) and P. falciparum malaria antigens (circumsporozoite protein, merozoite surface protein 119 [MSP-119]). Plasmodium falciparum infections were monitored through passive and active case detection. Seroprevalence to gSG6-P1, MSP-119, and CSP were 71.8% (95% Confidence interval [CI]: 70.9, 72.7), 68.6% (95% CI: 67.7, 69.5), and 8.6% (95% CI: 8.0, 9.2), respectively. Multivariate analysis showed that individuals with the highest Ab response to gSG6-P1 had six times the odds of being positive to CSP antigens (P < 0.001) and two times the odds of P. falciparum infection compared with low gSG6-P1 responders (P = 0.004). Spatial scan statistics revealed the presence of clusters of gSG6-P1 that partially overlapped P. falciparum infections. The gSG6-P1 salivary biomarker represents a good proxy for estimating P. falciparum malaria risk and could serve to implement hot spot–targeted vector control interventions to achieve malaria elimination.
Financial support: This work was supported by The Global Fund Thailand (THA-M-DDC) through the MAEL research project. P. Y.-U. received a PhD scholarship by the “Fondation Méditerranée Infection” (FR), Marseille, France. The Shoklo Malaria Research Unit (SMRU) is part of the Mahidol Oxford University Research Unit, supported by the Wellcome Trust of Great Britain.
Authors’ addresses: Phubeth Ya-Umphan and Vincent Corbel, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (IRD 224-CNRS 5290 UM1-UM2), Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France, E-mails: phubeth.y@dmsc.mail.go.th and vincent.corbel@ird.fr. Dominique Cerqueira and Francois Nosten, Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand, E-mails: domi_cerqueira@hotmail.com and francois@tropmedres.ac. Gilles Cottrell, Institut de Recherche pour le Développement (IRD), Université Paris Descartes, Sorbonne Paris Cité, UMR 216, Paris, France, E-mail: gilles.cottrell@ird.fr. Daniel M. Parker, Department of Population Health and Disease Prevention, University of California, Irvine, Irvine, CA, E-mail: dparker1@uci.edu. Freya J. I. Fowkes, Disease Elimination Program, Life Sciences, Burnet Institute, Melbourne, Australia, E-mail: freya.fowkes@burnet.edu.au.