• 1.

    Mendis K, Sina BJ, Marchesini P, Carter R, 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64: 97106.

  • 2.

    Guerra CA, Snow RW, Hay SI, 2006. Mapping the global extent of malaria in 2005. Trends Parasitol 22: 353358.

  • 3.

    Rosas-Aguirre A et al. 2016. Epidemiology of Plasmodium vivax malaria in Peru. Am J Trop Med Hyg 95: 133144.

  • 4.

    Saenz FE et al. 2017. Malaria epidemiology in low-endemicity areas of the northern coast of Ecuador: high prevalence of asymptomatic infections. Malar J 16: 300.

    • Search Google Scholar
    • Export Citation
  • 5.

    Krisher LK et al. 2016. Successful malaria elimination in the Ecuador-Peru border region: epidemiology and lessons learned. Malar J 15: 573.

  • 6.

    Carlton J, 2003. The Plasmodium vivax genome sequencing project. Trends Parasitol 19: 227231.

  • 7.

    Carlton JM et al. 2008. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455: 757763.

  • 8.

    Russell B, Suwanarusk R, Lek-Uthai U, 2006. Plasmodium vivax genetic diversity: microsatellite length matters. Trends Parasitol 22: 399401.

  • 9.

    Chenet SM, Schneider KA, Villegas L, Escalante AA, 2012. Local population structure of Plasmodium: impact on malaria control and elimination. Malar J 11: 412.

    • Search Google Scholar
    • Export Citation
  • 10.

    Van den Eede P et al. 2010. Multilocus genotyping reveals high heterogeneity and strong local population structure of the Plasmodium vivax population in the Peruvian Amazon. Malar J 9: 151.

    • Search Google Scholar
    • Export Citation
  • 11.

    Ferreira MU, Karunaweera ND, da Silva-Nunes M, da Silva NS, Wirth DF, Hartl DL, 2007. Population structure and transmission dynamics of Plasmodium vivax in rural Amazonia. J Infect Dis 195: 12181226.

    • Search Google Scholar
    • Export Citation
  • 12.

    Rezende AM, Tarazona-Santos E, Couto AD, Fontes CJ, De Souza JM, Carvalho LH, Brito CF, 2009. Analysis of genetic variability of Plasmodium vivax isolates from different Brazilian Amazon areas using tandem repeats. Am J Trop Med Hyg 80: 729733.

    • Search Google Scholar
    • Export Citation
  • 13.

    Imwong M et al. 2007. Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. Int J Parasitol 37: 10131022.

    • Search Google Scholar
    • Export Citation
  • 14.

    Schousboe ML et al. 2014. Global and local genetic diversity at two microsatellite loci in Plasmodium vivax parasites from Asia, Africa and South America. Malar J 13: 392.

    • Search Google Scholar
    • Export Citation
  • 15.

    Menegon M et al. 2016. Microsatellite genotyping of Plasmodium vivax isolates from pregnant women in four malaria endemic countries. PLoS One 11: e0152447.

    • Search Google Scholar
    • Export Citation
  • 16.

    Delgado-Ratto C et al. 2014. Population structure and spatio-temporal transmission dynamics of Plasmodium vivax after radical cure treatment in a rural village of the Peruvian Amazon. Malar J 13: 8.

    • Search Google Scholar
    • Export Citation
  • 17.

    Delgado-Ratto C et al. 2016. Population genetics of Plasmodium vivax in the Peruvian Amazon. PLoS Negl Trop Dis 10: e0004376.

  • 18.

    Griffing SM et al. 2011. South American Plasmodium falciparum after the malaria eradication era: clonal population expansion and survival of the fittest hybrids. PLoS One 6: e23486.

    • Search Google Scholar
    • Export Citation
  • 19.

    Manock SR et al. 2009. Etiology of acute undifferentiated febrile illness in the Amazon basin of Ecuador. Am J Trop Med Hyg 81: 146151.

  • 20.

    Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN, 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61: 315320.

    • Search Google Scholar
    • Export Citation
  • 21.

    Imwong M, Sudimack D, Pukrittayakamee S, Osorio L, Carlton JM, Day NP, White NJ, Anderson TJ, 2006. Microsatellite variation, repeat array length, and population history of Plasmodium vivax. Mol Biol Evol 23: 10161018.

    • Search Google Scholar
    • Export Citation
  • 22.

    Pacheco MA, Lopez-Perez M, Vallejo AF, Herrera S, Arevalo-Herrera M, Escalante AA, 2016. Multiplicity of infection and disease severity in Plasmodium vivax. PLoS Negl Trop Dis 10: e0004355.

    • Search Google Scholar
    • Export Citation
  • 23.

    Excoffier L, Laval G, Schneider S, 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 4750.

    • Search Google Scholar
    • Export Citation
  • 24.

    Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959.

  • 25.

    Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 26112620.

    • Search Google Scholar
    • Export Citation
  • 26.

    Beerli P, 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22: 341345.

  • 27.

    Beerli P, Palczewski M, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185: 313326.

    • Search Google Scholar
    • Export Citation
  • 28.

    Rezende AM, Tarazona-Santos E, Fontes CJ, Souza JM, Couto AD, Carvalho LH, Brito CF, 2010. Microsatellite loci: determining the genetic variability of Plasmodium vivax. Trop Med Int Health 15: 718726.

    • Search Google Scholar
    • Export Citation
  • 29.

    Aramburu Guarda J, Ramal Asayag C, Witzig R, 1999. Malaria reemergence in the Peruvian Amazon region. Emerg Infect Dis 5: 209215.

  • 30.

    Need JT, Rogers EJ, Phillips IA, Falcon R, Fernandez R, Carbajal F, Quintana J, 1993. Mosquitoes (Diptera: Culicidae) captured in the Iquitos area of Peru. J Med Entomol 30: 634638.

    • Search Google Scholar
    • Export Citation
  • 31.

    Reinbold-Wasson DD, Sardelis MR, Jones JW, Watts DM, Fernandez R, Carbajal F, Pecor JE, Calampa C, Klein TA, Turell MJ, 2012. Determinants of Anopheles seasonal distribution patterns across a forest to periurban gradient near Iquitos, Peru. Am J Trop Med Hyg 86: 459463.

    • Search Google Scholar
    • Export Citation
  • 32.

    Li J, Collins WE, Wirtz RA, Rathore D, Lal A, McCutchan TF, 2001. Geographic subdivision of the range of the malaria parasite Plasmodium vivax. Emerg Infect Dis 7: 3542.

    • Search Google Scholar
    • Export Citation
  • 33.

    Joy DA, Gonzalez-Ceron L, Carlton JM, Gueye A, Fay M, McCutchan TF, Su XZ, 2008. Local adaptation and vector-mediated population structure in Plasmodium vivax malaria. Mol Biol Evol 25: 12451252.

    • Search Google Scholar
    • Export Citation
  • 34.

    Abdullah NR et al. 2013. Plasmodium vivax population structure and transmission dynamics in Sabah Malaysia. PLoS One 8: e82553.

  • 35.

    Barry AE, Waltmann A, Koepfli C, Barnadas C, Mueller I, 2015. Uncovering the transmission dynamics of Plasmodium vivax using population genetics. Pathog Glob Health 109: 142152.

    • Search Google Scholar
    • Export Citation
  • 36.

    Koepfli C et al. 2015. Plasmodium vivax diversity and population structure across four continents. PLoS Negl Trop Dis 9: e0003872.

  • 37.

    Sutton PL, 2013. A call to arms: on refining Plasmodium vivax microsatellite marker panels for comparing global diversity. Malar J 12: 447.

    • Search Google Scholar
    • Export Citation
  • 38.

    Alexandre MA, Ferreira CO, Siqueira AM, Magalhaes BL, Mourao MP, Lacerda MV, Alecrim M, 2010. Severe Plasmodium vivax malaria, Brazilian Amazon. Emerg Infect Dis 16: 16111614.

    • Search Google Scholar
    • Export Citation
  • 39.

    Joshi H, Prajapati SK, Verma A, Kang’a S, Carlton JM, 2008. Plasmodium vivax in India. Trends Parasitol 24: 228235.

  • 40.

    Reid H, Vallely A, Taleo G, Tatem AJ, Kelly G, Riley I, Harris I, Henri I, Iamaher S, Clements AC, 2010. Baseline spatial distribution of malaria prior to an elimination programme in Vanuatu. Malar J 9: 150.

    • Search Google Scholar
    • Export Citation
  • 41.

    Van den Eede P, Erhart A, Van der Auwera G, Van Overmeir C, Thang ND, Hung le X, Anne J, D’Alessandro U, 2010. High complexity of Plasmodium vivax infections in symptomatic patients from a rural community in central Vietnam detected by microsatellite genotyping. Am J Trop Med Hyg 82: 223227.

    • Search Google Scholar
    • Export Citation
  • 42.

    Gray KA, Dowd S, Bain L, Bobogare A, Wini L, Shanks GD, Cheng Q, 2013. Population genetics of Plasmodium falciparum and Plasmodium vivax and asymptomatic malaria in Temotu Province, Solomon Islands. Malar J 12: 429.

    • Search Google Scholar
    • Export Citation
  • 43.

    Liu Y et al. 2014. Genetic diversity and population structure of Plasmodium vivax in central China. Malar J 13: 262.

  • 44.

    Hong NV et al. 2016. Population genetics of Plasmodium vivax in four rural communities in central Vietnam. PLoS Negl Trop Dis 10: e0004434.

Past two years Past Year Past 30 Days
Abstract Views 5 5 5
Full Text Views 1321 215 1
PDF Downloads 124 71 1
 
 
 
 
 
 
 
 
 
 
 

Genetic Variability of Plasmodium vivax in the North Coast of Peru and the Ecuadorian Amazon Basin

Julio A. VentocillaU.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru;

Search for other papers by Julio A. Ventocilla in
Current site
Google Scholar
PubMed
Close
,
Jorge NuñezU.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru;

Search for other papers by Jorge Nuñez in
Current site
Google Scholar
PubMed
Close
,
L. Lorena TapiaU.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru;

Search for other papers by L. Lorena Tapia in
Current site
Google Scholar
PubMed
Close
,
Carmen M. LucasU.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru;

Search for other papers by Carmen M. Lucas in
Current site
Google Scholar
PubMed
Close
,
Stephen R. ManockSanaria, Inc., Rockville, Maryland;

Search for other papers by Stephen R. Manock in
Current site
Google Scholar
PubMed
Close
,
Andrés G. LescanoU.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru;
Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration Universidad Peruana Cayetano Heredia, Lima, Peru;

Search for other papers by Andrés G. Lescano in
Current site
Google Scholar
PubMed
Close
,
Kimberly A. EdgelU.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru;

Search for other papers by Kimberly A. Edgel in
Current site
Google Scholar
PubMed
Close
, and
Paul C. F. GrafNaval Health Research Center, San Diego, California

Search for other papers by Paul C. F. Graf in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

In the Peruvian North Coast (PNC), the number of Plasmodium vivax malaria cases increased steadily from 2007 to 2010 despite a significant decline in the overall number of cases in Peru during the same period. To better understand the transmission dynamics of P. vivax populations in the PNC and the neighboring Ecuadorian Amazon Basin (EAB), we studied the genetic variability and population structure of P. vivax in these areas. One hundred and twenty P. vivax isolates (58 from Piura and 37 from Tumbes in the PNC collected from 2008 to 2010 and 25 from the EAB collected in Pastaza from 2001 to 2004) were assessed by five polymorphic microsatellite markers. Genetic variability was determined by expected heterozygosity (He) and population structure by Bayesian inference cluster analysis. We found very low genetic diversity in the PNC (He = 0–0.32) but high genetic diversity in the EAB (He = 0.43–0.70). Population structure analysis revealed three distinct populations in the three locations. Six of 37 (16%) isolates from Tumbes had an identical haplotype to that found in Piura, suggesting unidirectional flow from Piura to Tumbes. In addition, one haplotype from Tumbes showed similarity to a haplotype found in Pastaza, suggesting that this could be an imported case from EAB. These findings strongly suggest a minimal population flow and different levels of genetic variability between these two areas divided by the Andes Mountains. This work presents molecular markers that could be used to increase our understanding of regional malaria transmission dynamics, which has implications for the development of strategies for P. vivax control.

Author Notes

Address correspondence to Julio A. Ventocilla, Division of Immunology and Vaccine Development, Parasitology Department, U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru. E-mail: julio.a.ventocilla.fn@mail.mil

Financial support: This work was supported by the Armed Forces Health Surveillance Branch (AFHSB) and its Global Emerging Infections Surveillance and Response System (GEIS), Work Unit Number: 6000.RAD1.F.B0601. During the period 2011–2012, this work was also supported by the National Institutes of Health Training Grant 2D43TW007393 “Peru Infectious Diseases Epidemiology Research Training Consortium,” awarded to the U.S. Naval Medical Research Unit 6 (NAMRU-6).

Authors’ addresses: Julio A. Ventocilla, Jorge Nuñez, Laura Lorena Tapia, Carmen M. Lucas, Andrés G. Lescano, and Kimberly A. Edgel, Department of Parasitology, U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru, E-mails: julio.a.ventocilla.fn@mail.mil, jnunezco@gmail.com, laura.l.tapia2.ln@mail.mil, carmen.m.lucas2.ln@mail.mil, wlescano@hotmail.com, and kimberly.a.edgel.mil@mail.mil. Stephen R. Manock, Sanaria, Inc., Rockville, MD, E-mail: stevemanock@yahoo.com. Paul C. F. Graf, Naval Health Research Center, San Diego, CA, E-mail: paul.c.graf2.mil@mail.mil.

Save