Biomarkers for the Diagnosis of Cholangiocarcinoma: A Systematic Review

Gyem Tshering Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand;

Search for other papers by Gyem Tshering in
Current site
Google Scholar
PubMed
Close
,
Palden Wangyel Dorji Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand;

Search for other papers by Palden Wangyel Dorji in
Current site
Google Scholar
PubMed
Close
,
Wanna Chaijaroenkul Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand;

Search for other papers by Wanna Chaijaroenkul in
Current site
Google Scholar
PubMed
Close
, and
Kesara Na-Bangchang Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand;
Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand

Search for other papers by Kesara Na-Bangchang in
Current site
Google Scholar
PubMed
Close
Restricted access

Cholangiocarcinoma (CCA), a malignant tumor of the bile duct, is a major public health problem in many Southeast Asian countries, particularly Thailand. The slow progression makes it difficult for early diagnosis and most patients are detected in advanced stages. This study aimed to review all relevant articles related to the biomarkers for the diagnosis of CCA and point out potential biomarkers. A thorough search was performed in PubMed and ScienceDirect for CCA biomarker articles. Required data were extracted. A total of 46 articles that fulfilled the inclusion and had none of the exclusion criteria were included in the analysis (17, 22, 3, 4, and 1 articles on blood, tissue, bile, both blood and tissue, and urine biomarkers, respectively). Carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA), either alone or in combination with other biomarkers, are the most commonly studied biomarkers in the serum. Their sensitivity and specificity ranged from 47.2% to 98.2% and 89.7% to 100%, respectively. However, in the tissue, gene methylations and DNA-related markers were the most studied CCA biomarkers. Their sensitivity and specificity ranged from 58% to 87% and 98% to 100%, respectively. Some articles investigated biomarkers both in blood and tissues, particularly CA19-9 and CEA, with sensitivity and specificity ranging from 33% to 100% and 50% to 97.7%, respectively. Although quite a number of biomarkers with a potential role in the early detection of CCA have been established, it is difficult to single out any particular marker that could be used in the routine clinical settings.

    • Supplemental Materials (PDF 71 KB)

Author Notes

Address correspondence to Kesara Na-Bangchang, Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Pathum Thani 12120, Thailand. E-mail: kesaratmu@yahoo.com

Authors’ addresses: Gyem Tshering, Palden Wangyel Dorji, and Wanna Chaijaroenkul, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Pathum Thani, Thailand, E-mails: wangten_gyem@hotmail.com, paldenwangyal@yahoo.com, and wn_ap39@yahoo.com. Kesara Na-Bangchang, Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Pathum Thani, Thailand, E-mail: kesaratmu@yahoo.com.

  • 1.

    Elkins DB, Mairiang E, Sithithaworn P, Mairiang P, Chaiyakum J, Chamadol N, Loapaiboon V, Haswell-Elkins MR, 1996. Cross-sectional patterns of hepatobiliary abnormalities and possible precursor conditions of cholangiocarcinoma associated with Opisthorchis viverrini infection in humans. Am J Trop Med Hyg 55: 295–301.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Pinlaor S, Yongvanit P, Hiraku Y, Ma N, Semba R, Oikawa S, Murata M, Sripa B, Sithithaworn P, Kawanishi S, 2003. 8-nitroguanine formation in the liver of hamsters infected with Opisthorchis viverrini. Biochem Biophys Res Commun 309: 567–571.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Thamavit W, Bhamarapravati N, Sahaphong S, Vajrasthira S, Angsubhakorn S, 1978. Effects of dimethylnitrosamine on induction of cholangiocarcinoma in Opisthorchis viverrini-infected Syrian golden hamsters. Cancer Res 38: 4634–4639.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Vatanasapt V, Sriamporn S, Vatanasapt P, 2002. Cancer control in Thailand. Jpn J Clin Oncol 32 (Suppl): S82–S91.

  • 5.

    Khuhaprema TSP, Attasara P, Sriplung H, Wiangnon S, Sumitsawan Y, 2010. Cancer in Thailand. Bangkok, Thailand: National Cancer Institute.

    • PubMed
    • Export Citation
  • 6.

    Chainuvati T, Paosawadhi A, Sripranoth M, Manasatith S, Viranuvatti V, 1976. Carcinoma of the cystic duct associated with opisthorchiasis. Southeast Asian J Trop Med Public Health 7: 482–486.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Haswell-Elkins MR, Sithithaworn P, Elkins D, 1992. Opisthorchis viverrini and cholangiocarcinoma in northeast Thailand. Parasitol Today 8: 86–89.

  • 8.

    Prayong P, Mairiang E, Pairojkul C, Chamgramol Y, Mairiang P, Bhudisawasdi V, Sripa B, 2014. An interleukin-6 receptor polymorphism is associated with opisthorchiasis-linked cholangiocarcinoma risk in Thailand. Asian Pac J Cancer Prev 15: 5443–5447.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Yothaisong S, Thanee M, Namwat N, Yongvanit P, Boonmars T, Puapairoj A, Loilome W, 2014. Opisthorchis viverrini infection activates the PI3K/AKT/PTEN and Wnt/β-catenin signaling pathways in a cholangiocarcinogenesis model. Asian Pac J Cancer Prev 15: 10463–10468.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Montomoli J, Erichsen R, Norgaard M, Hoyer M, Hansen JB, Jacobsen JB, 2011. Survival of patients with primary liver cancer in central and northern Denmark, 1998–2009. Clin Epidemiol 3 (Suppl 1): 3–10.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Patel T, 2001. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology 33: 1353–1357.

  • 12.

    Khan SA, Emadossadaty S, Ladep NG, Thomas HC, Elliott P, Taylor-Robinson SD, Toledano MB, 2012. Rising trends in cholangiocarcinoma: is the ICD classification system misleading us? J Hepatol 56: 848–854.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Anderson CD, Pinson CW, Berlin J, Chari RS, 2004. Diagnosis and treatment of cholangiocarcinoma. Oncologist 9: 43–57.

  • 14.

    Meyer CG, Penn I, James L, 2000. Liver transplantation for cholangiocarcinoma: results in 207 patients. Transplantation 69: 1633–1637.

  • 15.

    Sudan D, DeRoover A, Chinnakotla S, Fox I, Shaw B Jr., McCashland T, Sorrell M, Tempero M, Langnas A, 2002. Radiochemotherapy and transplantation allow long-term survival for nonresectable hilar cholangiocarcinoma. Am J Transplant 2: 774–779.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Takada T, Amano H, Yasuda H, Nimura Y, Matsushiro T, Kato H, Nagakawa T, Nakayama T, 2002. Is postoperative adjuvant chemotherapy useful for gallbladder carcinoma? A phase III multicenter prospective randomized controlled trial in patients with resected pancreaticobiliary carcinoma. Cancer 95: 1685–1695.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Valle J et al. 2010. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 362: 1273–1281.

  • 18.

    Bengala C et al. 2010. Sorafenib in patients with advanced biliary tract carcinoma: a phase II trial. Br J Cancer 102: 68–72.

  • 19.

    Todoroki T, Ohara K, Kawamoto T, Koike N, Yoshida S, Kashiwagi H, Otsuka M, Fukao K, 2000. Benefits of adjuvant radiotherapy after radical resection of locally advanced main hepatic duct carcinoma. Int J Radiat Oncol Biol Phys 46: 581–587.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Todoroki T, Kawamoto T, Otsuka M, Koike N, Yoshida S, Takada Y, Adachi S, Kashiwagi H, Fukao K, Ohara K, 1999. Benefits of combining radiotherapy with aggressive resection for stage IV gallbladder cancer. Hepatogastroenterology 46: 1585–1591.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Nakagohri T, Kinoshita T, Konishi M, Takahashi S, Gotohda N, 2008. Surgical outcome and prognostic factors in intrahepatic cholangiocarcinoma. World J Surg 32: 2675–2680.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Loilome W, Wechagama P, Namwat N, Jusakul A, Sripa B, Miwa M, Kuver R, Yongvanit P, 2012. Expression of oxysterol binding protein isoforms in opisthorchiasis-associated cholangiocarcinoma: a potential molecular marker for tumor metastasis. Parasitol Int 61: 136–139.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Adisakwattana P, Suwandittakul N, Petmitr S, Wongkham S, Sangvanich P, Reamtong O, 2015. ALCAM is a novel cytoplasmic membrane protein in TNF-α stimulated invasive cholangiocarcinoma cells. Asian Pac J Cancer Prev 16: 3849–3856.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Subrungruanga I, Thawornkunob C, Chawalitchewinkoon-Petmitrc P, Pairojkul C, Wongkham S, Petmitrb S, 2013. Gene expression profiling of intrahepatic cholangiocarcinoma. Asian Pac J Cancer Prev 14: 557–563.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Faca VM, Hanash SM, 2009. In-depth proteomics to define the cell surface and secretome of ovarian cancer cells and processes of protein shedding. Cancer Res 69: 728–730.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Briggs CD, Neal CP, Mann CD, Steward WP, Manson MM, Berry DP, 2009. Prognostic molecular markers in cholangiocarcinoma: a systematic review. Eur J Cancer 45: 33–47.

  • 27.

    Mon NN, Kokuryo T, Hamaguchi M, 2009. Inflammation and tumor progression: a lesson from TNF-alpha-dependent FAK signaling in cholangiocarcinoma. Methods Mol Biol 512: 279–293.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Pinlaor S, Prakobwong S, Hiraku Y, Pinlaor P, Laothong U, Yongvanit P, 2010. Reduction of periductal fibrosis in liver fluke-infected hamsters after long-term curcumin treatment. Eur J Pharmacol 638: 134–141.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Tanimura Y et al. 2005. Tumor necrosis factor alpha promotes invasiveness of cholangiocarcinoma cells via its receptor, TNFR2. Cancer Lett 219: 205–213.

  • 30.

    Levy C, Lymp J, Angulo P, Gores GJ, Larusso N, Lindor KD, 2005. The value of serum CA 19-9 in predicting cholangiocarcinomas in patients with primary sclerosing cholangitis. Dig Dis Sci 50: 1734–1740.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Pungpak S, Akai PS, Longenecker BM, Ho M, Befus AD, Bunnag D, 1991. Tumor markers in the detection of opisthorchiasis-associated cholangiocarcinoma. Trans R Soc Trop Med Hyg 85: 277–279.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Patel AH, Harnois DM, Klee GG, LaRusso NF, Gores GJ, 2000. The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am J Gastroenterol 95: 204–207.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Qin XL, Wang ZR, Shi JS, Lu M, Wang L, He QR, 2004. Utility of serum CA19-9 in diagnosis of cholangiocarcinoma: in comparison with CEA. World J Gastroenterol 10: 427–432.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Loilome W, Yongvanit P, Wongkham C, Tepsiri N, Sripa B, Sithithaworn P, Hanai S, Miwa M, 2006. Altered gene expression in Opisthorchis viverrini-associated cholangiocarcinoma in hamster model. Mol Carcinog 45: 279–287.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Srisomsap C, Sawangareetrakul P, Subhasitanont P, Panichakul T, Keeratichamroen S, Lirdprapamongkol K, Chokchaichamnankit D, Sirisinha S, Svasti J, 2004. Proteomic analysis of cholangiocarcinoma cell line. Proteomics 4: 1135–1144.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Srisomsap C, Sawangareetrakul P, Subhasitanont P, Chokchaichamnankit D, Chiablaem K, Bhudhisawasdi V, Wongkham S, Svasti J, 2010. Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes. J Biomed Biotechnol 2010: 437143.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Tit-Oon P, Chokchaichamnankit D, Khongmanee A, Sawangareetrakul P, Svasti J, Srisomsap C, 2014. Comparative secretome analysis of cholangiocarcinoma cell line in three-dimensional culture. Int J Oncol 45: 2108–2116.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Desmetz C, Mange A, Maudelonde T, Solassol J, 2011. Autoantibody signatures: progress and perspectives for early cancer detection. J Cell Mol Med 15: 2013–2024.

  • 39.

    Andresen K et al. 2012. Novel target genes and a valid biomarker panel identified for cholangiocarcinoma. Epigenetics 7: 1249–1257.

  • 40.

    Andresen K et al. 2015. Four DNA methylation biomarkers in biliary brush samples accurately identify the presence of cholangiocarcinoma. Hepatology 61: 1651–1659.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Bertram S et al. 2016. Novel immunohistochemical markers differentiate intrahepatic cholangiocarcinoma from benign bile duct lesions. J Clin Pathol 69: 619–626.

  • 42.

    Bjornsson E, Kilander A, Olsson R, 1999. CA 19-9 and CEA are unreliable markers for cholangiocarcinoma in patients with primary sclerosing cholangitis. Liver 19: 501–508.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Brychtova V, Zampachova V, Hrstka R, Fabian P, Novak J, Hermanova M, Vojtesek B, 2014. Differential expression of anterior gradient protein 3 in intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Exp Mol Pathol 96: 375–381.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Charatcharoenwitthaya P, Enders FB, Halling KC, Lindor KD, 2008. Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. Hepatology 48: 1106–1117.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Du S et al. 2016. Differential diagnosis of immunoglobulin G4-associated cholangitis from cholangiocarcinoma. J Clin Gastroenterol 50: 501–505.

  • 46.

    Feldmann G et al. 2006. Detection of human aspartyl (asparaginyl) beta-hydroxylase and homeobox B7 mRNA in brush cytology specimens from patients with bile duct cancer. Endoscopy 38: 604–609.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Correa-Gallego C et al. 2016. Circulating plasma levels of microRNA-21 and microRNA-221 are potential diagnostic markers for primary intrahepatic cholangiocarcinoma. PLoS One 11: e0163699.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Hooper JE, Morgan TK, Grompe M, Sheppard BC, Troxell ML, Corless CL, Streeter PR, 2012. The novel monoclonal antibody HPC2 and N-cadherin distinguish pancreatic ductal adenocarcinoma from cholangiocarcinoma. Hum Pathol 43: 1583–1589.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Jahng AW, Chung D, Pham B, Reicher S, Yee B, Abramyan L, Venegas R, French S, Eysselein VE, 2009. Staining for intracytoplasmic lumina and CAM5.2 increases the detection rate for bile duct cancers. Endoscopy 41: 965–970.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Khoontawad J et al. 2014. Increase of exostosin 1 in plasma as a potential biomarker for opisthorchiasis-associated cholangiocarcinoma. Tumour Biol 35: 1029–1039.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Kisiel JB et al. 2013. Methylated bone morphogenetic protein 3 (BMP3) gene: evaluation of tumor suppressor function and biomarker potential in biliary cancer. J Mol Biomark Diagn 4: 1000145.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Kraiklang R, Pairojkul C, Khuntikeo N, Imtawil K, Wongkham S, Wongkham C, 2014. A novel predictive equation for potential diagnosis of cholangiocarcinoma. PLoS One 9: e89337.

  • 53.

    Li YG, Zhang N, 2009. Clinical significance of serum tumor M2-PK and CA19-9 detection in the diagnosis of cholangiocarcinoma. Dig Liver Dis 41: 605–608.

  • 54.

    Li Y, Li DJ, Chen J, Liu W, Li JW, Jiang P, Zhao X, Guo F, Li XW, Wang SG, 2015. Application of joint detection of AFP, CA19-9, CA125 and CEA in identification and diagnosis of cholangiocarcinoma. Asian Pac J Cancer Prev 16: 3451–3455.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Liu L, Wang J, Liu B, Dai S, Wang X, Chen J, Huang L, Xiao X, He D, 2008. Serum levels of variants of transthyretin down-regulation in cholangiocarcinoma. J Cell Biochem 104: 745–755.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Lumachi F, Lo Re G, Tozzoli R, D’Aurizio F, Facomer F, Chiara GB, Basso SM, 2014. Measurement of serum carcinoembryonic antigen, carbohydrate antigen 19-9, cytokeratin-19 fragment and matrix metalloproteinase-7 for detecting cholangiocarcinoma: a preliminary case-control study. Anticancer Res 34: 6663–6667.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Matsuda A et al. 2010. Wisteria floribunda agglutinin-positive mucin 1 is a sensitive biliary marker for human cholangiocarcinoma. Hepatology 52: 174–182.

  • 58.

    Matsuda A et al. 2013. Glycoproteomics-based cancer marker discovery adopting dual enrichment with Wisteria floribunda agglutinin for high specific glyco-diagnosis of cholangiocarcinoma. J Proteomics 85: 1–11.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Metzger J et al. 2013. Urine proteomic analysis differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders. Gut 62: 122–130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Monsouvanh A, Proungvitaya T, Limpaiboon T, Wongkham C, Wongkham S, Luvira V, Proungvitaya S, 2014. Serum cathepsin B to cystatin C ratio as a potential marker for the diagnosis of cholangiocarcinoma. Asian Pac J Cancer Prev 15: 9511–9515.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Navaneethan U, Lourdusamy V, Poptic E, Hammel JP, Sanaka MR, Parsi MA, 2015. Comparative effectiveness of pyruvate kinase M2 in bile, serum carbohydrate antigen 19-9, and biliary brushings in diagnosing malignant biliary strictures. Dig Dis Sci 60: 903–909.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Nischalke HD, Schmitz V, Luda C, Aldenhoff K, Berger C, Feldmann G, Sauerbruch T, Spengler U, Nattermann J, 2012. Detection of IGF2BP3, HOXB7, and NEK2 mRNA expression in brush cytology specimens as a new diagnostic tool in patients with biliary strictures. PLoS One 7: e42141.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Nishino R et al. 2008. Identification of novel candidate tumor marker genes for intrahepatic cholangiocarcinoma. J Hepatol 49: 207–216.

  • 64.

    Ono Y, Hiratsuka Y, Murata M, Takasawa A, Fukuda R, Nojima M, Tanaka S, Osanai M, Hirata K, Sawada N, 2016. Claudins-4 and -7 might be valuable markers to distinguish hepatocellular carcinoma from cholangiocarcinoma. Virchows Arch 469: 417–426.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Patsenker E, Wilkens L, Banz V, Osterreicher CH, Weimann R, Eisele S, Keogh A, Stroka D, Zimmermann A, Stickel F, 2010. The alphavbeta6 integrin is a highly specific immunohistochemical marker for cholangiocarcinoma. J Hepatol 52: 362–369.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Pattanapairoj S, Silsirivanit A, Muisuk K, Seubwai W, Cha’on U, Vaeteewoottacharn K, Sawanyawisuth K, Chetchotsak D, Wongkham S, 2015. Improve discrimination power of serum markers for diagnosis of cholangiocarcinoma using data mining-based approach. Clin Biochem 48: 668–673.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Ramage JK, Donaghy A, Farrant JM, Iorns R, Williams R, 1995. Serum tumor markers for the diagnosis of cholangiocarcinoma in primary sclerosing cholangitis. Gastroenterology 108: 865–869.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Rucksaken R, Pairojkul C, Pinlaor P, Khuntikeo N, Roytrakul S, Selmi C, Pinlaor S, 2014. Plasma autoantibodies against heat shock protein 70, enolase 1 and ribonuclease/angiogenin inhibitor 1 as potential biomarkers for cholangiocarcinoma. PLoS One 9: e103259.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Sato Y, Harada K, Sasaki M, Yasaka T, Nakanuma Y, 2012. Heat shock proteins 27 and 70 are potential biliary markers for the detection of cholangiocarcinoma. Am J Pathol 180: 123–130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Shi Y, Deng X, Zhan Q, Shen B, Jin X, Zhu Z, Chen H, Li H, Peng C, 2013. A prospective proteomic-based study for identifying potential biomarkers for the diagnosis of cholangiocarcinoma. J Gastrointest Surg 17: 1584–1591.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Shin SH, Lee K, Kim BH, Cho NY, Jang JY, Kim YT, Kim D, Jang JJ, Kang GH, 2012. Bile-based detection of extrahepatic cholangiocarcinoma with quantitative DNA methylation markers and its high sensitivity. J Mol Diagn 14: 256–263.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Silsirivanit A et al. 2013. CA-S27: a novel Lewis a associated carbohydrate epitope is diagnostic and prognostic for cholangiocarcinoma. Cancer Sci 104: 1278–1284.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Siqueira E, Schoen RE, Silverman W, Martin J, Rabinovitz M, Weissfeld JL, Abu-Elmaagd K, Madariaga JR, Slivka A, 2002. Detecting cholangiocarcinoma in patients with primary sclerosing cholangitis. Gastrointest Endosc 56: 40–47.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Tan FL et al. 2010. p38delta/MAPK13 as a diagnostic marker for cholangiocarcinoma and its involvement in cell motility and invasion. Int J Cancer 126: 2353–2361.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Tao LY, Cai L, He XD, Liu W, Qu Q, 2010. Comparison of serum tumor markers for intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Am Surg 76: 1210–1213.

  • 76.

    Tolek A, Wongkham C, Proungvitaya S, Silsirivanit A, Roytrakul S, Khuntikeo N, Wongkham S, 2012. Serum alpha1beta-glycoprotein and afamin ratio as potential diagnostic and prognostic markers in cholangiocarcinoma. Exp Biol Med (Maywood) 237: 1142–1149.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Voigtlander T, David S, Thamm K, Schlue J, Metzger J, Manns MP, Lankisch TO, 2014. Angiopoietin-2 and biliary diseases: elevated serum, but not bile levels are associated with cholangiocarcinoma. PLoS One 9: e97046.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Yang Z, 2015. The utility of villin and mammaglobin in the differential diagnosis between intrahepatic cholangiocarcinoma and breast cancer. Appl Immunohistochem Mol Morphol 23: 19–25.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Zen Y, Britton D, Mitra V, Pike I, Sarker D, Itoh T, Heaton N, Quaglia A, 2014. Tubulin β-III: a novel immunohistochemical marker for intrahepatic peripheral cholangiocarcinoma. Histopathology 65: 784–792.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Bernuzzi F et al. 2016. Serum microRNAs as novel biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Clin Exp Immunol 185: 61–71.

  • 81.

    Wang LJ, Zhang KL, Zhang N, Ma XW, Yan SW, Cao DH, Shi SJ, 2015. Serum miR-26a as a diagnostic and prognostic biomarker in cholangiocarcinoma. Oncotarget 6: 18631–18640.

  • 82.

    Li L et al. 2014. Human bile contains microRNA-laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis. Hepatology 60: 896–907.

  • 83.

    Selaru FM et al. 2009. MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 49: 1595–1601.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Voigtlander T, Gupta SK, Thum S, Fendrich J, Manns MP, Lankisch TO, Thum T, 2015. MicroRNAs in serum and bile of patients with primary sclerosing cholangitis and/or cholangiocarcinoma. PLoS One 10: e0139305.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Magnani JL, Steplewski Z, Koprowski H, Ginsburg V, 1983. Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res 43: 5489–5492.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Malesci A, Tommasini MA, Bonato C, Bocchia P, Bersani M, Zerbi A, Beretta E, Di Carlo V, 1987. Determination of CA 19-9 antigen in serum and pancreatic juice for differential diagnosis of pancreatic adenocarcinoma from chronic pancreatitis. Gastroenterology 92: 60–67.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Flamini E et al. 2006. Free DNA and carcinoembryonic antigen serum levels: an important combination for diagnosis of colorectal cancer. Clin Cancer Res 12: 6985–6988.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Staab HJ, Anderer FA, Brummendorf T, Hornung A, Fischer R, 1982. Prognostic value of preoperative serum CEA level compared to clinical staging: II. Stomach cancer. Br J Cancer 45: 718–727.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Cummins JM, Velculescu VE, 2006. Implications of micro-RNA profiling for cancer diagnosis. Oncogene 25: 6220–6227.

  • 90.

    Chen L et al. 2009. The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol 50: 358–369.

  • 91.

    Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T, 2006. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130: 2113–2129.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Wang C et al. 2015. A panel of five serum miRNAs as a potential diagnostic tool for early-stage renal cell carcinoma. Sci Rep 5: 7610.

  • 93.

    Silakit R, Loilome W, Yongvanit P, Chusorn P, Techasen A, Boonmars T, Khuntikeo N, Chamadol N, Pairojkul C, Namwat N, 2014. Circulating miR-192 in liver fluke-associated cholangiocarcinoma patients: a prospective prognostic indicator. J Hepatobiliary Pancreat Sci 21: 864–872.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Wang LG, Gu J, 2012. Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol 36: e61–e67.

  • 95.

    Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, Poon TC, Ng SS, Sung JJ, 2009. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 58: 1375–1381.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Busse-Wicher M, Wicher KB, Kusche-Gullberg M, 2014. The exostosin family: proteins with many functions. Matrix Biol 35: 25–33.

  • 97.

    Mach L, Stuwe K, Hagen A, Ballaun C, Glossl J, 1992. Proteolytic processing and glycosylation of cathepsin B. The role of the primary structure of the latent precursor and of the carbohydrate moiety for cell-type-specific molecular forms of the enzyme. Biochem J 282: 577–582.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Sloane BF, 1990. Cathepsin B and cystatins: evidence for a role in cancer progression. Semin Cancer Biol 1: 137–152.

  • 99.

    Calkins CC, Sloane BF, 1995. Mammalian cysteine protease inhibitors: biochemical properties and possible roles in tumor progression. Biol Chem Hoppe Seyler 376: 71–80.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Nagai A, Terashima M, Harada T, Shimode K, Takeuchi H, Murakawa Y, Nagasaki M, Nakano A, Kobayashi S, 2003. Cathepsin B and H activities and cystatin C concentrations in cerebrospinal fluid from patients with leptomeningeal metastasis. Clin Chim Acta 329: 53–60.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Sabirzhanov B, Stoica BA, Hanscom M, Piao CS, Faden AI, 2012. Over-expression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. J Neurochem 123: 542–554.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Mayer MP, Bukau B, 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62: 670–684.

  • 103.

    Augustin HG, Koh GY, Thurston G, Alitalo K, 2009. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10: 165–177.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Tang D et al. 2006. Angiogenesis in cholangiocellular carcinoma: expression of vascular endothelial growth factor, angiopoietin-1/2, thrombospondin-1 and clinicopathological significance. Oncol Rep 15: 525–532.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 105.

    Hanahan D, Weinberg RA, 2011. Hallmarks of cancer: the next generation. Cell 144: 646–674.

  • 106.

    Hatziapostolou M, Iliopoulos D, 2011. Epigenetic aberrations during oncogenesis. Cell Mol Life Sci 68: 1681–1702.

  • 107.

    Brooks J, Cairns P, Zeleniuch-Jacquotte A, 2009. Promoter methylation and the detection of breast cancer. Cancer Causes Control 20: 1539–1550.

  • 108.

    Belinsky SA, 2004. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 4: 707–717.

  • 109.

    Park SY, Kwon HJ, Lee HE, Ryu HS, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang GH, 2011. Promoter CpG island hypermethylation during breast cancer progression. Virchows Arch 458: 73–84.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Korioth F, Gieffers C, Frey J, 1994. Cloning and characterization of the human gene encoding aspartyl beta-hydroxylase. Gene 150: 395–399.

  • 111.

    Ince N, de la Monte SM, Wands JR, 2000. Overexpression of human aspartyl (asparaginyl) beta-hydroxylase is associated with malignant transformation. Cancer Res 60: 1261–1266.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Palumbo KS, Wands JR, Safran H, King T, Carlson RI, de la Monte SM, 2002. Human aspartyl (asparaginyl) beta-hydroxylase monoclonal antibodies: potential biomarkers for pancreatic carcinoma. Pancreas 25: 39–44.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Boncinelli E, 1997. Homeobox genes and disease. Curr Opin Genet Dev 7: 331–337.

  • 114.

    Cillo C, Cantile M, Faiella A, Boncinelli E, 2001. Homeobox genes in normal and malignant cells. J Cell Physiol 188: 161–169.

  • 115.

    Ben-Menachem T, 2007. Risk factors for cholangiocarcinoma. Eur J Gastroenterol Hepatol 19: 615–617.

  • 116.

    Park J, Tadlock L, Gores GJ, Patel T, 1999. Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line. Hepatology 30: 1128–1133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Agrawal S, Kuvshinoff BW, Khoury T, Yu J, Javle MM, LeVea C, Groth J, Coignet LJ, Gibbs JF, 2007. CD24 expression is an independent prognostic marker in cholangiocarcinoma. J Gastrointest Surg 11: 445–451.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Bjornsson E, Chari ST, Smyrk TC, Lindor K, 2007. Immunoglobulin G4 associated cholangitis: description of an emerging clinical entity based on review of the literature. Hepatology 45: 1547–1554.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Alvaro D, 2009. Serum and bile biomarkers for cholangiocarcinoma. Curr Opin Gastroenterol 25: 279–284.

  • 120.

    Steinberg W, 1990. The clinical utility of the CA 19-9 tumor-associated antigen. Am J Gastroenterol 85: 350–355.

  • 121.

    Goonetilleke KS, Siriwardena AK, 2007. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J Surg Oncol 33: 266–270.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 1734 1186 65
Full Text Views 1116 35 2
PDF Downloads 613 36 4
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save