Sauerwein RW, Roestenberg M, Moorthy VS, 2011. Experimental human challenge infections can accelerate clinical malaria vaccine development. Nat Rev Immunol 11: 57–64.
Roestenberg M, O’Hara GA, Duncan CJ, Epstein JE, Edwards NJ, Scholzen A, van der Ven AJ, Hermsen CC, Hill AV, Sauerwein RW, 2012. Comparison of clinical and parasitological data from controlled human malaria infection trials. PLoS One 7: e38434.
Verhage DF, Telgt DS, Bousema JT, Hermsen CC, van Gemert GJ, van der Meer JW, Sauerwein RW, 2005. Clinical outcome of experimental human malaria induced by Plasmodium falciparum-infected mosquitoes. Neth J Med 63: 52–58.
Mordmuller B et al. 2015. Direct venous inoculation of Plasmodium falciparum sporozoites for controlled human malaria infection: a dose-finding trial in two centres. Malar J 14: 117.
Roestenberg M et al. 2013. Controlled human malaria infections by intradermal injection of cryopreserved Plasmodium falciparum sporozoites. Am J Trop Med Hyg 88: 5–13.
Keitany GJ et al. 2014. Immunization of mice with live-attenuated late liver stage-arresting Plasmodium yoelii parasites generates protective antibody responses to preerythrocytic stages of malaria. Infect Immun 82: 5143–5153.
Mac-Daniel L, Buckwalter MR, Berthet M, Virk Y, Yui K, Albert ML, Gueirard P, Menard R, 2014. Local immune response to injection of Plasmodium sporozoites into the skin. J Immunol 193: 1246–1257.
Hermsen CC, de Vlas SJ, van Gemert GJ, Telgt DS, Verhage DF, Sauerwein RW, 2004. Testing vaccines in human experimental malaria: statistical analysis of parasitemia measured by a quantitative real-time polymerase chain reaction. Am J Trop Med Hyg 71: 196–201.
Walk J, Schats R, Langenberg MC, Reuling IJ, Teelen K, Roestenberg M, Hermsen CC, Visser LG, Sauerwein RW, 2016. Diagnosis and treatment based on quantitative PCR after controlled human malaria infection. Malar J 15: 398.
Churcher TS et al. 2017. Probability of transmission of malaria from mosquito to human is regulated by mosquito parasite density in naive and vaccinated hosts. PLoS Pathog 13: e1006108.
Rosenberg R, Wirtz RA, Schneider I, Burge R, 1990. An estimation of the number of malaria sporozoites ejected by a feeding mosquito. Trans R Soc Trop Med Hyg 84: 209–212.
Ponnudurai T, Lensen AH, van Gemert GJ, Bolmer MG, Meuwissen JH, 1991. Feeding behaviour and sporozoite ejection by infected Anopheles stephensi. Trans R Soc Trop Med Hyg 85: 175–180.
Beier JC, Onyango FK, Koros JK, Ramadhan M, Ogwang R, Wirtz RA, Koech DK, Roberts CR, 1991. Quantitation of malaria sporozoites transmitted in vitro during salivation by wild Afrotropical Anopheles. Med Vet Entomol 5: 71–79.
Habluetzel A, Merzagora L, Jenni L, Betschart B, Rotigliano G, Esposito F, 1992. Detecting malaria sporozoites in live, field-collected mosquitoes. Trans R Soc Trop Med Hyg 86: 138–140.
Frischknecht F, Baldacci P, Martin B, Zimmer C, Thiberge S, Olivo-Marin JC, Shorte SL, Menard R, 2004. Imaging movement of malaria parasites during transmission by Anopheles mosquitoes. Cell Microbiol 6: 687–694.
Amino R, Thiberge S, Martin B, Celli S, Shorte S, Frischknecht F, Menard R, 2006. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med 12: 220–224.
Coffeng LE, Hermsen CC, Sauerwein RW, de Vlas SJ, 2017. The power of malaria vaccine trials using controlled human malaria infection. PLoS Comput Biol 13: e1005255.
Pringle G, 1966. A quantitative study of naturally-acquired malaria infections in Anopheles gambiae and Anopheles funestus in a highly malarious area of East Africa. Trans R Soc Trop Med Hyg 60: 626–632.
Lyke KE et al. 2010. Plasmodium falciparum malaria challenge by the bite of aseptic Anopheles stephensi mosquitoes: results of a randomized infectivity trial. PLoS One 5: e13490.
Talley AK et al. 2014. Safety and comparability of controlled human Plasmodium falciparum infection by mosquito bite in malaria-naive subjects at a new facility for sporozoite challenge. PLoS One 9: e109654.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 742 | 460 | 59 |
Full Text Views | 737 | 10 | 2 |
PDF Downloads | 175 | 15 | 4 |
Controlled Human Malaria Infection (CHMI) has become an increasingly important tool for the evaluation of drugs and vaccines. Controlled Human Malaria Infection has been demonstrated to be a reproducible model; however, there is some variability in time to onset of parasitemia between volunteers and studies. At our center, mosquitoes infected with Plasmodium falciparum by membrane feeding have variable and high salivary gland sporozoite load (mean 78,415; range 26,500–160,500). To determine whether this load influences parasitemia after CHMI, we analyzed data from 13 studies. We found no correlation between the sporozoite load of a mosquito batch and time to parasitemia or parasite density of first-wave parasitemia. These findings support the use of infected mosquito bite as a reproducible means of inducing P. falciparum infection and suggest that within this range, salivary gland sporozoite load does not influence the stringency of a CHMI.
Financial support: J. W. reports grants from the Bill & Melinda Gates Foundation during the conduct of the study. E. M. B. reports grants from ZonMw, grants from EMVDA, grants from EU, and grants from TIPharma during the conduct of the study.
Authors’ addresses: Jona Walk, Geert-Jan van Gemert, Wouter Graumans, Robert W. Sauerwein, and Else M. Bijker, Radboud University Medical Center, Nijmegen, The Netherlands, E-mails: jona.walk@radboudumc.nl, geert-jan.vangemert@radboudumc.nl, wouter.graumans@radboudumc.nl, robert.sauerwein@radboudumc.nl, and else.bijker@radboudumc.nl.
Sauerwein RW, Roestenberg M, Moorthy VS, 2011. Experimental human challenge infections can accelerate clinical malaria vaccine development. Nat Rev Immunol 11: 57–64.
Roestenberg M, O’Hara GA, Duncan CJ, Epstein JE, Edwards NJ, Scholzen A, van der Ven AJ, Hermsen CC, Hill AV, Sauerwein RW, 2012. Comparison of clinical and parasitological data from controlled human malaria infection trials. PLoS One 7: e38434.
Verhage DF, Telgt DS, Bousema JT, Hermsen CC, van Gemert GJ, van der Meer JW, Sauerwein RW, 2005. Clinical outcome of experimental human malaria induced by Plasmodium falciparum-infected mosquitoes. Neth J Med 63: 52–58.
Mordmuller B et al. 2015. Direct venous inoculation of Plasmodium falciparum sporozoites for controlled human malaria infection: a dose-finding trial in two centres. Malar J 14: 117.
Roestenberg M et al. 2013. Controlled human malaria infections by intradermal injection of cryopreserved Plasmodium falciparum sporozoites. Am J Trop Med Hyg 88: 5–13.
Keitany GJ et al. 2014. Immunization of mice with live-attenuated late liver stage-arresting Plasmodium yoelii parasites generates protective antibody responses to preerythrocytic stages of malaria. Infect Immun 82: 5143–5153.
Mac-Daniel L, Buckwalter MR, Berthet M, Virk Y, Yui K, Albert ML, Gueirard P, Menard R, 2014. Local immune response to injection of Plasmodium sporozoites into the skin. J Immunol 193: 1246–1257.
Hermsen CC, de Vlas SJ, van Gemert GJ, Telgt DS, Verhage DF, Sauerwein RW, 2004. Testing vaccines in human experimental malaria: statistical analysis of parasitemia measured by a quantitative real-time polymerase chain reaction. Am J Trop Med Hyg 71: 196–201.
Walk J, Schats R, Langenberg MC, Reuling IJ, Teelen K, Roestenberg M, Hermsen CC, Visser LG, Sauerwein RW, 2016. Diagnosis and treatment based on quantitative PCR after controlled human malaria infection. Malar J 15: 398.
Churcher TS et al. 2017. Probability of transmission of malaria from mosquito to human is regulated by mosquito parasite density in naive and vaccinated hosts. PLoS Pathog 13: e1006108.
Rosenberg R, Wirtz RA, Schneider I, Burge R, 1990. An estimation of the number of malaria sporozoites ejected by a feeding mosquito. Trans R Soc Trop Med Hyg 84: 209–212.
Ponnudurai T, Lensen AH, van Gemert GJ, Bolmer MG, Meuwissen JH, 1991. Feeding behaviour and sporozoite ejection by infected Anopheles stephensi. Trans R Soc Trop Med Hyg 85: 175–180.
Beier JC, Onyango FK, Koros JK, Ramadhan M, Ogwang R, Wirtz RA, Koech DK, Roberts CR, 1991. Quantitation of malaria sporozoites transmitted in vitro during salivation by wild Afrotropical Anopheles. Med Vet Entomol 5: 71–79.
Habluetzel A, Merzagora L, Jenni L, Betschart B, Rotigliano G, Esposito F, 1992. Detecting malaria sporozoites in live, field-collected mosquitoes. Trans R Soc Trop Med Hyg 86: 138–140.
Frischknecht F, Baldacci P, Martin B, Zimmer C, Thiberge S, Olivo-Marin JC, Shorte SL, Menard R, 2004. Imaging movement of malaria parasites during transmission by Anopheles mosquitoes. Cell Microbiol 6: 687–694.
Amino R, Thiberge S, Martin B, Celli S, Shorte S, Frischknecht F, Menard R, 2006. Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med 12: 220–224.
Coffeng LE, Hermsen CC, Sauerwein RW, de Vlas SJ, 2017. The power of malaria vaccine trials using controlled human malaria infection. PLoS Comput Biol 13: e1005255.
Pringle G, 1966. A quantitative study of naturally-acquired malaria infections in Anopheles gambiae and Anopheles funestus in a highly malarious area of East Africa. Trans R Soc Trop Med Hyg 60: 626–632.
Lyke KE et al. 2010. Plasmodium falciparum malaria challenge by the bite of aseptic Anopheles stephensi mosquitoes: results of a randomized infectivity trial. PLoS One 5: e13490.
Talley AK et al. 2014. Safety and comparability of controlled human Plasmodium falciparum infection by mosquito bite in malaria-naive subjects at a new facility for sporozoite challenge. PLoS One 9: e109654.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 742 | 460 | 59 |
Full Text Views | 737 | 10 | 2 |
PDF Downloads | 175 | 15 | 4 |