Polymorphisms in the K13 Gene in Plasmodium falciparum from Different Malaria Transmission Areas of Kenya

Zaydah R. de Laurent Kenya Medical Research Institute/United States Army Medical Research Directorate–Kenya, Kisumu, Kenya;
Center for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya;

Search for other papers by Zaydah R. de Laurent in
Current site
Google Scholar
PubMed
Close
,
Lorna J. Chebon Kenya Medical Research Institute/United States Army Medical Research Directorate–Kenya, Kisumu, Kenya;

Search for other papers by Lorna J. Chebon in
Current site
Google Scholar
PubMed
Close
,
Luicer A. Ingasia Kenya Medical Research Institute/United States Army Medical Research Directorate–Kenya, Kisumu, Kenya;

Search for other papers by Luicer A. Ingasia in
Current site
Google Scholar
PubMed
Close
,
Hoseah M. Akala Kenya Medical Research Institute/United States Army Medical Research Directorate–Kenya, Kisumu, Kenya;

Search for other papers by Hoseah M. Akala in
Current site
Google Scholar
PubMed
Close
,
Ben Andagalu Kenya Medical Research Institute/United States Army Medical Research Directorate–Kenya, Kisumu, Kenya;

Search for other papers by Ben Andagalu in
Current site
Google Scholar
PubMed
Close
,
Lynette Isabella Ochola-Oyier Center for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya;
KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya;

Search for other papers by Lynette Isabella Ochola-Oyier in
Current site
Google Scholar
PubMed
Close
, and
Edwin Kamau Kenya Medical Research Institute/United States Army Medical Research Directorate–Kenya, Kisumu, Kenya;
Walter Reed National Military Medical Center (WRNMMC), Bethesda, Maryland

Search for other papers by Edwin Kamau in
Current site
Google Scholar
PubMed
Close
Restricted access

The development of artemisinin (ART)-resistant parasites in Southeast Asia (SEA) threatens malaria control globally. Mutations in the Kelch 13 (K13)-propeller domain have been useful in identifying ART resistance in SEA. ART combination therapy (ACT) remains highly efficacious in the treatment of uncomplicated malaria in Sub-Saharan Africa (SSA). However, it is crucial that the efficacy of ACT is closely monitored. Toward this effort, this study profiled the prevalence of K13 nonsynonymous mutations in different malaria ecological zones of Kenya and in different time periods, before (pre) and after (post) the introduction of ACT as the first-line treatment of malaria. Nineteen nonsynonymous mutations were present in the pre-ACT samples (N = 64) compared with 22 in the post-ACT samples (N = 251). Eight of these mutations were present in both pre- and post-ACT parasites. Interestingly, seven of the shared single-nucleotide polymorphisms were at higher frequencies in the pre-ACT than the post-ACT parasites. The A578S mutation reported in SSA and the V568G mutation reported in SEA were found in both pre- and post-ACT parasites, with their frequencies declining post-ACT. D584Y and R539K mutations were found only in post-ACT parasites; changes in these codons have also been reported in SEA with different amino acids. The N585K mutation described for the first time in this study was present only in post-ACT parasites, and it was the most prevalent mutation at a frequency of 5.2%. This study showed the type, prevalence, and frequency of K13 mutations that varied based on the malaria ecological zones and also between the pre- and post-ACT time periods.

Author Notes

Address correspondence to Edwin Kamau, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD 20889. E-mail: edwin.kamau.mil@mail.mil

Financial support: This work was supported by the Armed Forces Health Surveillance Centre, Division of Global Emerging Infections Surveillance and Response System Operations.

Nucleotide sequence accession numbers: Nucleotide sequence data are available in the GenBank database under the accession numbers KY987161 to KY987475.

Authors’ addresses: Zaydah R. de Laurent, Kenya Medical Research Institute/United States Army Medical Research Directorate-Kenya, Kisumu, Kenya, and Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya, E-mail: zdelaurent@gmail.com. Lorna J. Chebon, Luicer A. Ingasia, Hoseah M. Akala, and Ben Andagalu, Kenya Medical Research Institute/United States Army Medical Research Directorate-Kenya, Kisumu, Kenya, E-mails: lorna.chebon@usamru-k.org, luiser.ingasia@usamru-k.org, hosea.akala@usamru-k.org, and ben.andagalu@usamru-k.org. Lynette Isabella Ochola-Oyier, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya, and Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya, E-mail: isseyochola@gmail.com. Edwin Kamau, Walter Reed National Military Medical Center (WRNMMC), Bethesda, MD, 20889, E-mail: edwin.kamau.mil@mail.mil.

  • 1.

    Ariey F et al. 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505: 50–55.

  • 2.

    Straimer J et al. 2014. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347: 428–431.

  • 3.

    Dondorp AM et al. 2009. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455–467.

  • 4.

    Amaratunga C, Witkowski B, Dek D, Try V, Khim N, Miotto O, Ménard D, Fairhurst RM, 2014. Plasmodium falciparum founder populations in western Cambodia have reduced artemisinin sensitivity in vitro. 58: 4935–4937.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Witkowski B et al. 2013. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis 13: 1043–1049.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Amaratunga C, Neal AT, Fairhurst RM, 2014. Flow cytometry-based analysis of artemisinin-resistant Plasmodium falciparum in the ring-stage survival assay. Antimicrob Agents Chemother 58: 4938–4940.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ashley EA et al. 2014. Spread of artemisinin resistance in Plasmodium falciparum Malaria. N Engl J Med 371: 411–423.

  • 8.

    Carrara VI et al. 2009. Changes in the treatment responses to artesunate-mefloquine on the northwestern border of Thailand during 13 years of continuous deployment. PLoS One 4: e4551.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Amaratunga C et al. 2012. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis 12: 851–858.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Liu H et al. 2015. In vivo monitoring of dihydroartemisinin-piperaquine sensitivity in Plasmodium falciparum along the China–Myanmar border of Yunnan Province, China from 2007 to 2013. Malar J 14: 47.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Miotto O et al. 2013. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet 45: 648–655.

  • 12.

    Ménard D et al. 2016. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med 374: 2453–2464.

  • 13.

    WHO, 2016. Artemisinin and Artemisinin-Based Combination Therapy Resistance. Available at: http://apps.who.int/iris/bitstream/10665/208820/1/WHO_HTM_GMP_2016.5_eng.pdf?ua=1. Accessed June 27, 2017.

    • PubMed
    • Export Citation
  • 14.

    Miotto O et al. 2015. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet 47: 226–234.

  • 15.

    Takala-Harrison S et al. 2015. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis 211: 670–679.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    MalariaGEN Plasmodium falciparum Community Project, 2016. Genomic epidemiology of artemisinin resistant malaria. eLife 5: 17–24.

  • 17.

    Ouattara A et al. 2015. Polymorphisms in the K13-propeller gene in artemisinin-susceptible Plasmodium falciparum parasites from Bougoula-Hameau and Bandiagara, Mali. Am J Trop Med Hyg 92: 1202–1206.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Taylor SM et al. 2015. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis 211: 680–688.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Isozumi R, Uemura H, Kimata I, Ichinose Y, Logedi J, Omar AH, Kaneko A, 2015. Novel mutations in K13 propeller gene of artemisinin-resistant Plasmodium falciparum. Emerg Infect Dis 21: 490–492.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kamau E et al. 2015. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis 211: 1352–1355.

  • 21.

    Conrad MD, Bigira V, Kapisi J, Muhindo M, Kamya MR, Havlir DV, Dorsey G, Rosenthal PJ, 2014. Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children. PLoS One 9: e105690.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Muwanguzi J, Henriques G, Sawa P, Bousema T, Sutherland CJ, Beshir KB, 2016. Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children. Malar J 15: 36.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ocan M, Bwanga F, Okeng A, Katabazi F, Kigozi E, Kyobe S, Ogwal-Okeng J, Obua C, 2016. Prevalence of K13-propeller gene polymorphisms among Plasmodium falciparum parasites isolated from adult symptomatic patients in northern Uganda. BMC Infect Dis 16: 428.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Heuchert A, Abduselam N, Zeynudin A, Eshetu T, Löscher T, Wieser A, Pritsch M, Berens-Riha N, 2015. Molecular markers of anti-malarial drug resistance in southwest Ethiopia over time: regional surveillance from 2006 to 2013. Malar J 14: 208.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lu F et al. 2017. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa. N Engl J Med 376: 991–993.

  • 26.

    National Malaria Control Programme (NMCP), Kenya National Bureau of Statistics (KNBS) and ICF International, 2016. Kenya Malaria Indicator Survey 2015. Nairobi, Kenya, and Rockville, Maryland NMCP, KNBS, and ICF International.

    • PubMed
    • Export Citation
  • 27.

    Amin AA, Zurovac D, Kangwana BB, Greenfield J, Otieno DN, Akhwale WS, Snow RW, 2007. The challenges of changing national malaria drug policy to artemisinin-based combinations in Kenya. Malar J 6: 72.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Edgar RC, 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.

  • 29.

    Alam MS, Mohon AN, Bayih A, Folefoc A, Pillai D, 2014. Mutations in P. falciparum K13 propeller gene from Bangladesh: emerging resistance? Malar J 13 (Suppl 1): 71.

  • 30.

    Mohon AN, Alam MS, Bayih AG, Folefoc A, Shahinas D, Haque R, Pillai DR, 2014. Mutations in Plasmodium falciparum K13 propeller gene from Bangladesh (2009–2013). Malar J 13: 431.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mishra N et al. 2015. Surveillance of artemisinin resistance in Plasmodium falciparum in India using the Kelch 13 molecular marker. Antimicrob Agents Chemother 59: 2548–2553.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ogutu BR et al. 2014. Efficacy and safety of artemether-lumefantrine and dihydroartemisinin-piperaquine in the treatment of uncomplicated Plasmodium falciparum malaria in Kenyan children aged less than five years: results of an open-label, randomized, single-centre study. Malar J. 13: 33–43

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Abuaku B, Duah N, Quaye L, Quashie N, Malm K, Bart-Plange C, Koram K, 2016. Therapeutic efficacy of artesunate-amodiaquine and artemether–lumefantrine combinations in the treatment of uncomplicated malaria in two ecological zones in Ghana. Malar J 15: 6.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Espié E, Lima A, Atua B, Dhorda M, Flévaud L, Sompwe EM, Palma Urrutia PP, Guerin PJ, 2012. Efficacy of fixed-dose combination artesunate–amodiaquine versus artemether–lumefantrine for uncomplicated childhood Plasmodium falciparum malaria in Democratic Republic of Congo: a randomized non-inferiority trial. Malar J 11: 174.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Ndounga M, Mayengue PI, Casimiro PN, Loumouamou D, Basco LK, Ntoumi F, Brasseur P, 2013. Artesunate-amodiaquine efficacy in Congolese children with acute uncomplicated falciparum malaria in Brazzaville. Malar J 12: 53.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ogouyèmi-Hounto A, Azandossessi C, Lawani S, Damien G, de Tove YS, Remoue F, Kinde Gazard D, 2016. Therapeutic efficacy of artemether–lumefantrine for the treatment of uncomplicated falciparum malaria in northwest Benin. Malar J 15: 37.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Schramm B et al. 2013. Efficacy of artesunate–amodiaquine and artemether–lumefantrine fixed-dose combinations for the treatment of uncomplicated Plasmodium falciparum malaria among children aged six to 59 months in Nimba County, Liberia: an open-label randomized non-inferiority. Malar J 12: 251.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Sirima SB et al. 2016. Comparison of artesunate–mefloquine and artemether–lumefantrine fixed-dose combinations for treatment of uncomplicated Plasmodium falciparum malaria in children younger than 5 years in sub-Saharan Africa: a randomised, multicentre, phase 4 trial. Lancet Infect Dis 16: 1123–1133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Ashley EA et al. 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371: 411–423.

  • 40.

    Cooper RA, Conrad MD, Watson QD, Huezo SJ, Ninsiima H, Tumwebaze P, Nsobya SL, Rosenthal PJ, 2015. Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays. Antimicrob Agents Chemother 59: 5061–5064.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Huang B et al. 2015. Polymorphisms of the artemisinin resistant marker (K13) in Plasmodium falciparum parasite populations of Grande Comore Island 10 years after artemisinin combination therapy. Parasit Vectors 8: 634.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Ouattara A et al. 2015. Polymorphisms in the K13-propeller gene in artemisinin-susceptible Plasmodium falciparum parasites from Bougoula-Hameau and Bandiagara, Mali. Am J Trop Med Hyg 92: 1202–1206.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Torrentino-madamet M et al. 2014. Limited polymorphisms in k13 gene in Plasmodium falciparum isolates from Dakar, Senegal in 2012–2013. Malar J 13: 472.

  • 44.

    Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio J-J, 2014. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 32: 819–821.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Ingasia LA, Cheruiyot J, Okoth SA, Andagalu B, Kamau E, 2016. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya. Infect Genet Evol 39: 372–380.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Wang Z, Shrestha S, Li X, Miao J, Yuan L, Cabrera M, Grube C, Yang Z, Cui L, 2015. Prevalence of K13-propeller polymorphisms in Plasmodium falciparum from China–Myanmar border in 2007–2012. Malar J 14: 168.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Talundzic E et al. 2015. Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign. PLoS Pathog 11: e1004789.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Joy DA et al. 2003. Early origin and recent expansion of Plasmodium falciparum. Science 300: 318–321.

  • 49.

    Noor AM et al. 2009. The risks of malaria infection in Kenya in 2009. BMC Infect Dis 9: 180.

Past two years Past Year Past 30 Days
Abstract Views 1912 1673 321
Full Text Views 728 12 0
PDF Downloads 223 15 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save