Walther B, Walther M, 2007. What does it take to control malaria? Ann Trop Med Parasitol 101: 657–672.
WHO, 2016. World Malaria Report 2016. Geneva, Switzerland: World Health Organization.
Dondorp AM et al. 2009. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455–467.
Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM, 2008. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359: 2619–2620.
Phyo AP et al. 2012. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379: 1960–1966.
Kyaw MP et al. 2013. Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar. PLoS One 8: e57689.
Thriemer K et al. 2014. Delayed parasite clearance after treatment with dihydroartemisinin-piperaquine in Plasmodium falciparum malaria patients in central Vietnam. Antimicrob Agents Chemother 58: 7049–7055.
Na-Bangchang K, Karbwang J, 2013. Emerging artemisinin resistance in the border areas of Thailand. Expert Rev Clin Pharmacol 6: 307–322.
WHO, 2016. Artemisinin and Artemisinin-based Combination Therapy Resistance. Geneva, Switzerland: World Health Organization.
Ménard D et al. KARMA Consortium, 2016. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med 374: 2453–2464.
Takala-Harrison S et al. 2015. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis 211: 670–679.
Miotto O et al. 2015. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet 47: 226–234.
Slater HC, Griffin JT, Ghani AC, Okell LC, 2016. Assessing the potential impact of artemisinin and partner drug resistance in sub-Saharan Africa. Malar J 15: 10.
Lubell Y, Dondorp A, Guérin PJ, Drake T, Meek S, Ashley E, Day NP, White NJ, White LJ, 2014. Artemisinin resistance—modelling the potential human and economic costs. Malar J 13: 452.
Saralamba S et al. 2011. Intrahost modeling of artemisinin resistance in Plasmodium falciparum. Proc Natl Acad Sci USA 108: 397–402.
Witkowski B, Lelièvre J, Barragán MJL, Laurent V, Su XZ, Berry A, Benoit-Vical F, 2010. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother 54: 1872–1877.
Witkowski B et al. 2013. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother 57: 914–923.
Teuscher F, Chen N, Kyle DE, Gatton ML, Cheng Q, 2012. Phenotypic changes in artemisinin-resistant Plasmodium falciparum lines in vitro: evidence for decreased sensitivity to dormancy and growth inhibition. Antimicrob Agents Chemother 56: 428–431.
Teuscher F, Gatton ML, Chen N, Peters J, Kyle DE, Cheng Q, 2010. Artemisinin‐induced dormancy in Plasmodium falciparum: duration, recovery rates, and implications in treatment failure. J Infect Dis 202: 1362–1368.
Ariey F et al. 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505: 50–55.
Straimer J et al. 2015. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347: 428–431.
Ashley EA et al. Tracking Resistance to Artemisinin Collaboration (TRAC), 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371: 411–423.
Tun KM et al. 2015. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis 15: 415–421.
Taylor SM et al. 2015. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis 211: 680–688.
Conrad MD, Bigira V, Kapisi J, Muhindo M, Kamya MR, Havlir DV, Dorsey G, Rosenthal PJ, 2014. Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children. PLoS One 9: e105690.
Mvumbi DM, Bobanga TL, Kayembe J-MN, Mvumbi GL, Situakibanza HN-T, Benoit-Vical F, Melin P, De Mol P, Hayette M-P, 2017. Molecular surveillance of Plasmodium falciparum resistance to artemisinin-based combination therapies in the Democratic Republic of Congo. PLoS One 12: e0179142.
Maiga AW et al. 2012. No evidence of delayed parasite clearance after oral artesunate treatment of uncomplicated falciparum malaria in Mali. Am J Trop Med Hyg 87: 23–28.
Niaré K et al. 2016. In vivo efficacy and parasite clearance of artesunate + sulfadoxine-pyrimethamine versus artemether-lumefantrine in Mali. Am J Trop Med Hyg 94: 634–639.
Perfect JR, Cox GM, 1999. Drug resistance in Cryptococcus neoformans. Drug Resist Updat 2: 259–269.
Witkowski B et al. 2013. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis 13: 1043–1049.
Chotivanich K, Tripura R, Das D, Yi P, Day NPJ, Pukrittayakamee S, Chuor CM, Socheat D, Dondorp AM, White NJ, 2014. Laboratory detection of artemisinin-resistant Plasmodium falciparum. Antimicrob Agents Chemother 58: 3157–3161.
Ye R et al. 2016. Distinctive origin of artemisinin-resistant Plasmodium falciparum on the China-Myanmar border. Sci Rep 6: 20100.
Menard S et al. 2016. Insight into k13-propeller gene polymorphism and ex vivo DHA-response profiles from Cameroonian isolates. Malar J 15: 572.
Dicko A et al. 2007. Year-to-year variation in the age-specific incidence of clinical malaria in two potential vaccine testing sites in Mali with different levels of malaria transmission intensity. Am J Trop Med Hyg 77: 1028–1033.
Klayman DL, 1985. Qinghaosu (artemisinin): an antimalarial drug from China. Science 228: 1049–1055.
Kerb R, Fux R, Mörike K, Kremsner PG, Gil JP, Gleiter CH, Schwab M, 2009. Pharmacogenetics of antimalarial drugs: effect on metabolism and transport. Lancet Infect Dis 9: 760–774.
Moll K, Kaneko A, Scherf A, Wahlgren M, eds., 2013. Methods in Malaria Research, 6th edition. Available at: https://www.beiresources.org/portals/2/MR4/Methods_In_Malaria_Research-6th_edition.pdf. Accessed January 7, 2017.
Didier M, Menard D, Ariey F, 2013. PCR_Sequencing for genotyping SNPs PF3D7_1343700 Kelch protein propeller domain. Protoc Exch 2013: doi:10.1038/protex.2013.096.
Tinto H et al. 2014. Ex vivo anti-malarial drugs sensitivity profile of Plasmodium falciparum field isolates from Burkina Faso five years after the national policy change. Malar J 13: 207.
Pradines B, Rogier C, Fusai T, Tall A, Trape JF, Doury JC, 1998. In vitro activity of artemether against African isolates (Senegal) of Plasmodium falciparum in comparison with standard antimalarial drugs. Am J Trop Med Hyg 58: 354–357.
Fall B et al. 2011. Ex vivo susceptibility of Plasmodium falciparum isolates from Dakar, Senegal, to seven standard anti-malarial drugs. Malar J 10: 310.
Quashie NB et al. 2013. A SYBR Green 1-based in vitro test of susceptibility of Ghanaian Plasmodium falciparum clinical isolates to a panel of anti-malarial drugs. Malar J 12: 450.
Zatra R, Lekana-douki JB, Lekoulou F, Bisvigou U, Ngoungou EB, Ndouo FST, 2012. In vitroantimalarial susceptibility and molecular markers of drug resistance in Franceville, Gabon. BMC Infect Dis 12: 307.
Ngalah BS et al. 2015. Analysis of major genome loci underlying artemisinin resistance and pfmdr1 copy number in pre- and post-ACTs in western Kenya. Sci Rep 5: 8308.
Witkowski B et al. 2013. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother 57: 914–923.
Ménard S et al. 2015. Induction of multidrug tolerance in Plasmodium falciparum by extended artemisinin pressure. Emerg Infect Dis 21: 1733–1741.
Miotto O et al. 2013. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet 45: 648–655.
MalariaGEN Plasmodium falciparum Community Project, 2016. Genomic epidemiology of artemisinin resistant malaria. eLife 5: e08714.
Amaratunga C, Witkowski B, Dek D, Try V, Khim N, Miotto O, Ménard D, Fairhurst RM, 2014. Plasmodium falciparum founder populations in western Cambodia have reduced artemisinin sensitivity in vitro. Antimicrob Agents Chemother 58: 4935–4937.
Leang R, Barrette A, Bouth DM, Menard D, Abdur R, Duong S, Ringwald P, 2013. Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008 to 2010. Antimicrob Agents Chemother 57: 818–826.
World Health Organization, 2017. Artemisinin and Artemisinin-Based Combination Therapy Resistance, April 2017. Available at: http://apps.who.int/iris/bitstream/10665/255213/1/WHO-HTM-GMP-2017.9-eng.pdf?ua=1. Accessed December 6, 2017.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 609 | 130 | 2 |
PDF Downloads | 143 | 38 | 3 |
We assessed the ex vivo/in vitro sensitivity of 54 Malian Plasmodium falciparum isolates to artemisinin for the monitoring of drug resistance in this area. The artemisinin sensitivity of parasites was evaluated using 1) the ex vivo and in vitro parasite recrudescence detection after treatment of the ring stage with 1–200 nM artemisinin for 48 hours and 2) the in vitro parasite recrudescence kinetics assay over 7 days after 6-hour treatment of the ring stage with 700 nM dihydroartemisinin (DHA). In addition, as recommended by the World Health Organization for artemisinin resistance characterization, the ring-stage survival assay (RSA0–3 h) was performed and the parasite isolates were sequenced at the kelch 13 propeller locus. No clinical and molecular evidence of artemisinin resistance was observed. However, these isolates present different phenotypic profiles in response to artemisinin treatments. Despite all RSA0–3 h values less than 1.5%, six out of 46 (13.0%) isolates tested ex vivo and four out of six (66.7%) isolates tested in vitro were able to multiply after 48-hour treatments with 100 nM artemisinin. Moreover, five out of eight isolates tested showed faster parasite recovery after DHA treatment in kinetic assays. The presence of such phenotypes needs to be taken into account in the assessment of the efficacy of artemisinins in Mali. The assays presented here appear as valuable tools for the monitoring of artemisinin sensitivity in the field and thus could help to evaluate the risk of emergence of artemisinin resistance in Africa.
These authors contributed equally to this work.
Financial support: This work was supported by the Fondation Mérieux and World Health Organization, Geneva; the French Centre National de la Recherche Scientifique; the French Institut National de la Santé et de la Recherche Médicale; the French Agence Nationale de la Recherche; and the ParaFrap Consortium.
Authors’ addresses: Karamoko Niaré and Ogobara K. Doumbo, Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali, E-mails: karaniare@yahoo.fr and okd@icermali.org. Lucie Paloque, Pety Tor, Arba P. Ramadani, Jean-Michel Augereau, and Françoise Benoit-Vical, Laboratoire de Chimie de Coordination du CNRS, Centre Nationale de la Recherche Scientifique, Université de Toulouse, UPS, INPT, Toulouse, France, E-mails: lucie.paloque@lcc-toulouse.fr, smilyrab@yahoo.com, arba.pramundita@gmail.com, jean-michel.augereau@lcc-toulouse.fr, and francoise.vical@inserm.fr. Sandie Ménard, Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Toulouse, France, E-mail: sandie.menard@inserm.fr. Antoine Dara, Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali, and Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, E-mail: tonydara@icermali.org. Antoine Berry, Service de Parasitologie-Mycologie, Centre Hospitalier et Universitaire de Toulouse, Toulouse, France, and Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Toulouse, France, E-mail: berry.a@chu-toulouse.fr.