Rassi A, Rassi A Jr, Marin-Neto JA, 2010. Chagas disease. Lancet 375: 1388–1402.
World Health Organization, 2014. Chagas Disease (American trypanosomiasis). World Health Organ Fact Sheet 340. Available at: http://who.int/mediacentre/factsheets/fs340/en/.
Tarleton R, Gürtler RE, Urbina JA, Ramsey J, Viotti R, 2014. Chagas disease and the London declaration on neglected tropical diseases. PLoS Negl Trop Dis 8: e3219.
Mougabure-Cueto G, Picollo MI, 2015. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 149: 70–85.
Sierra I, Capriotti N, Fronza G, Mougabure-Cueto G, Ons S, 2016. Kdr mutations in Triatoma infestans from the Gran Chaco are distributed in two differentiated foci: implications for pyrethroid resistance management. Acta Trop 158: 208–213.
Santo Orihuela PL, Vassena CV, Zerba EN, Picollo MI, 2008. Relative contribution of monooxygenase and esterase to pyrethroid resistance in Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. J Med Entomol 45: 298–306.
Pedrini N, Mijailovsky SJ, Girotti JR, Stariolo R, Cardozo RM, Gentile A, Juárez MP, 2009. Control of pyrethroid-resistant Chagas disease vectors with entomopathogenic fungi. PLoS Negl Trop Dis 3: e434.
Nikou D, Ranson H, Hemingway J, 2003. An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene 318: 91–102.
Gilbert LI, 2004. Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster. Mol Cell Endocrinol 215: 1–10.
Feyereisen R, 2005. Insect cytochrome P450. Gilbert LI, Latrou K, Gill SS, eds. Comprehensive Molecular Insect Science, Vol. 4. Oxford, United Kingdom: Elsevier, 1–77.
Rewitz KF, O’Connor MB, Gilbert LI, 2007. Molecular evolution of the insect Halloween family of cytochrome P450s: phylogeny, gene organization and functional conservation. Insect Biochem Mol Biol 37: 741–753.
Zhou XJ, Ma CX, Li M, Sheng CF, Liu HX, Qiu XH, 2010. CYP9A12 and CYP9A17 in the cotton bollworm Helicoverpa armigera: sequence similarity, expression profile and xenobiotic response. Pest Manag Sci 66: 65–73.
Carino FA, Koener JP, Plapp FW Jr, Feyereisen R, 1992. Expression of the cytochrome P450 gene CYP6A1 in the housefly, Musca domestica. Mullin CA, Scott JG, eds. Molecular Mechanisms of Insecticide Resistance: Diversity among Insects, Vol. 5. ACS Symposium Series. Washington, DC: ACS, 31–40.
Carino FA, Koener JF, Plapp FW Jr, Feyereisen R, 1994. Constitutive over expression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem Mol Biol 24: 411–418.
Liu N, Scott JG, 1997. Phenobarbital induction of CYP6D1 is due to a trans acting factor on autosome 2 in house flies, Musca domestica. Insect Mol Biol 6: 77–81.
Liu N, Scott JG, 1998. Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly. Insect Mol Biol 28: 531–535.
Li X, Schuler MA, Berenbaum MR, 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52: 231–253.
Grosso CG, Blariza MJ, Mougabure-Cueto G, Picollo MI, García BA, 2016. Identification of three cytochrome P450 genes in the Chagas’ disease vector Triatoma infestans: expression analysis in deltamethrin susceptible and resistant populations. Infect Genet Evol 44: 459–470.
Terriere LC, 1983. Enzyme induction, gene amplification, and insect resistance to insecticides. Georghiou GP, Satio T, eds. Pest Resistance to Pesticides. New York, NY: Plenum Press, 265–297.
Terriere LC, 1984. Induction of detoxification enzymes in insects. Annu Rev Entomol 29: 71–88.
Kasai S, Weerashinghe IS, Shono T, Yamakawa M, 2000. Molecular cloning, nucleotide sequence, and gene expression of a cytochrome P450 (CYP6F1) from the pyrethroid-resistant mosquito, Culex quinquefasciatus say. Insect Biochem Mol Biol 30: 163–171.
Daborn PJ et al. 2002. A single P450 allele associated with insecticide resistance in Drosophila. Science 297: 2253–2256.
Daborn PJ, Lumb C, Boey A, Wong W, Ffrench-Constant RH, Batterham P, 2007. Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytlchrome P450 genes by transgenic over-expression. Insect Biochem Mol Biol 37: 512–519.
Zhu F, Li T, Zhang L, Liu N, 2008. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica. BMC Physiol 8: 18.
Paine MJI, Scrutton NS, Munro AW, Roberts GCK, Wolf CR, 2004. Electron transfer partners of cytochrome P450. Ortiz de Montellano PR, ed. Cytochromes P450: Stucture, Mechanism and Biochemistry. New York, NY: Kluwer Academic, 115–148.
Ono T, Ozasa S, Hasegawa F, Imai Y, 1977. Involvement of NADPH-cytochrome c reductase in the rat liver squalene epoxidase system. Biochim Biophys Acta 486: 401–407.
Schenkman JB, Jansson I, 1999. Interactions between cytochrome P450 monooxygenases and cytochrome b5. Drug Metab Rev 31: 351–364.
Nishino H, Ishibashi T, 2000. Evidence for requirement of NADPH-cytochrome P450 oxidoreductase in the microsomal NADPH-sterol delta7-reductase system. Arch Biochem Biophys 374: 293–298.
Wang J, Ortiz de Montellano PR, 2003. The binding sites on human heme oxygenase-1 for cytochrome P450 reductase and biliverdin reductase. J Biol Chem 278: 20069–20076.
Nelson D, 2009. The cytochrome P450 homepage. Hum Genomics 4: 59–65.
Lycett GJ, McLaughlin LA, Ranson H, Hemingway J, Kafatos FC, Loukeris TG, Paine MJ, 2006. Anopheles gambiae P450 reductase is highly expressed in oenocytes and in vivo knockdown increases permethrin susceptibility. Insect Mol Biol 15: 321–327.
Sarapusit S, Pethuan S, Rongnoparut P, 2010. Mosquito NADPH-cytochrome P450 oxidoreductase: kinetics and role of phenylalanine amino acid substitutions at Leu86 and Leu219 in CYP6AA3-mediated deltamethrin metabolism. Arch Insect Biochem Physiol 73: 232–244.
Zhu F, Sams S, Moural T, Haynes KF, Potter MF, Palli SR, 2012. RNA interference of NADPH-cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius. PLoS One 7: e31037.
Blariza MJ, Soria NW, Torres AG, Grosso CG, García BA, 2014. cDNA isolation and characterization of two vitellogenin genes in the Chagas’ disease vector Triatoma infestans (Hemiptera, Reduviidae). Gene 543: 118–124.
Blariza MJ, Leyria J, Canavoso LE, Soria NW, García BA, 2016. Dynamics of expression of two vitellogenin genes in the Chagas’ disease vector Triatoma infestans: analysis throughout pre-vitellogenesis and vitellogenesis. Acta Trop 156: 100–107.
Blariza MJ, Grosso CG, García BA, 2017. Silencing of two vitellogenin genes inhibits oviposition in the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 97: 477–480.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729.
Livak KJ, Schmittgen TD, 2001. Análisis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402–408.
Toloza A, Germano M, Mougabure Cueto G, Vassena C, Zerba E, Picollo MI, 2008. Differential patterns of insecticide resistance in eggs and first instars of Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. J Med Entomol 45: 421–426.
Germano M, Picollo MI, Spillmann C, Mougabure Cueto G, 2014. Fenitrothion: an alternative insecticide for the control of deltamethrin-resistant populations of Triatoma infestans in northern Argentina. Med Vet Entomol 28: 21–25.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 663 | 602 | 16 |
Full Text Views | 487 | 6 | 0 |
PDF Downloads | 82 | 10 | 0 |
Pyrethroid resistance has been detected in Triatoma infestans (Hemiptera: Reduviidae), which was atributed to target site insensitivity and increased oxidative metabolism of the insecticide by cytochrome P450s. Nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome P450 reductase (CPR) plays an essential role in transferring electrons from NADPH to the P450-substrate complex. In this study, the full length CPR cDNA of T. infestans was isolated and gene expression was determined by quantitative polymerase chain reaction. The open reading frame is 2,046 bp long, encoding a protein of 682 amino acids. Amino acid sequence analysis indicates that the T. infestans CPR and the putative Rhodnius prolixus and Triatoma dimidiata CPRs present conserved ligand-binding domains. Congruent with a previous study of our laboratory, in which the expression of three cytochrome P450 genes (CYP4EM7, CYP3085B1, and CYP3092A6 genes) was induced by deltamethrin, the levels of T. infestans CPR mRNA were upregulated in the fat body of fifth instar nymphs after topical application of deltamethrin. Besides, as it was observed in the CYP4EM7 gene, it was detected overexpression of the CPR gene in the most resistant strain of T. infestans included in the study. These results suggest that CPR plays an essential role in P450-mediated resistance of T. infestans to insecticides.
Financial support: This research was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (FONCyT-Argentina), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-Argentina), and Secretaría de Ciencia y Tecnología, Universidad Nacional de Córdoba (SECyT-UNC-Argentina). M. M. S. and B. A. G. are Career Investigators of CONICET.
Authors’ addresses: Carla G. Grosso, María M. Stroppa, Gonzalo M. Varela, and Beatriz A. García, INICSA (CONICET-UNC), Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina, E-mails: cachigrosso@hotmail.com, mercedesstroppa@hotmail.com, gonzavrla@hotmail.com, and bgarcia@biomed.uncor.edu.
Rassi A, Rassi A Jr, Marin-Neto JA, 2010. Chagas disease. Lancet 375: 1388–1402.
World Health Organization, 2014. Chagas Disease (American trypanosomiasis). World Health Organ Fact Sheet 340. Available at: http://who.int/mediacentre/factsheets/fs340/en/.
Tarleton R, Gürtler RE, Urbina JA, Ramsey J, Viotti R, 2014. Chagas disease and the London declaration on neglected tropical diseases. PLoS Negl Trop Dis 8: e3219.
Mougabure-Cueto G, Picollo MI, 2015. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 149: 70–85.
Sierra I, Capriotti N, Fronza G, Mougabure-Cueto G, Ons S, 2016. Kdr mutations in Triatoma infestans from the Gran Chaco are distributed in two differentiated foci: implications for pyrethroid resistance management. Acta Trop 158: 208–213.
Santo Orihuela PL, Vassena CV, Zerba EN, Picollo MI, 2008. Relative contribution of monooxygenase and esterase to pyrethroid resistance in Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. J Med Entomol 45: 298–306.
Pedrini N, Mijailovsky SJ, Girotti JR, Stariolo R, Cardozo RM, Gentile A, Juárez MP, 2009. Control of pyrethroid-resistant Chagas disease vectors with entomopathogenic fungi. PLoS Negl Trop Dis 3: e434.
Nikou D, Ranson H, Hemingway J, 2003. An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene 318: 91–102.
Gilbert LI, 2004. Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster. Mol Cell Endocrinol 215: 1–10.
Feyereisen R, 2005. Insect cytochrome P450. Gilbert LI, Latrou K, Gill SS, eds. Comprehensive Molecular Insect Science, Vol. 4. Oxford, United Kingdom: Elsevier, 1–77.
Rewitz KF, O’Connor MB, Gilbert LI, 2007. Molecular evolution of the insect Halloween family of cytochrome P450s: phylogeny, gene organization and functional conservation. Insect Biochem Mol Biol 37: 741–753.
Zhou XJ, Ma CX, Li M, Sheng CF, Liu HX, Qiu XH, 2010. CYP9A12 and CYP9A17 in the cotton bollworm Helicoverpa armigera: sequence similarity, expression profile and xenobiotic response. Pest Manag Sci 66: 65–73.
Carino FA, Koener JP, Plapp FW Jr, Feyereisen R, 1992. Expression of the cytochrome P450 gene CYP6A1 in the housefly, Musca domestica. Mullin CA, Scott JG, eds. Molecular Mechanisms of Insecticide Resistance: Diversity among Insects, Vol. 5. ACS Symposium Series. Washington, DC: ACS, 31–40.
Carino FA, Koener JF, Plapp FW Jr, Feyereisen R, 1994. Constitutive over expression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem Mol Biol 24: 411–418.
Liu N, Scott JG, 1997. Phenobarbital induction of CYP6D1 is due to a trans acting factor on autosome 2 in house flies, Musca domestica. Insect Mol Biol 6: 77–81.
Liu N, Scott JG, 1998. Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly. Insect Mol Biol 28: 531–535.
Li X, Schuler MA, Berenbaum MR, 2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52: 231–253.
Grosso CG, Blariza MJ, Mougabure-Cueto G, Picollo MI, García BA, 2016. Identification of three cytochrome P450 genes in the Chagas’ disease vector Triatoma infestans: expression analysis in deltamethrin susceptible and resistant populations. Infect Genet Evol 44: 459–470.
Terriere LC, 1983. Enzyme induction, gene amplification, and insect resistance to insecticides. Georghiou GP, Satio T, eds. Pest Resistance to Pesticides. New York, NY: Plenum Press, 265–297.
Terriere LC, 1984. Induction of detoxification enzymes in insects. Annu Rev Entomol 29: 71–88.
Kasai S, Weerashinghe IS, Shono T, Yamakawa M, 2000. Molecular cloning, nucleotide sequence, and gene expression of a cytochrome P450 (CYP6F1) from the pyrethroid-resistant mosquito, Culex quinquefasciatus say. Insect Biochem Mol Biol 30: 163–171.
Daborn PJ et al. 2002. A single P450 allele associated with insecticide resistance in Drosophila. Science 297: 2253–2256.
Daborn PJ, Lumb C, Boey A, Wong W, Ffrench-Constant RH, Batterham P, 2007. Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytlchrome P450 genes by transgenic over-expression. Insect Biochem Mol Biol 37: 512–519.
Zhu F, Li T, Zhang L, Liu N, 2008. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica. BMC Physiol 8: 18.
Paine MJI, Scrutton NS, Munro AW, Roberts GCK, Wolf CR, 2004. Electron transfer partners of cytochrome P450. Ortiz de Montellano PR, ed. Cytochromes P450: Stucture, Mechanism and Biochemistry. New York, NY: Kluwer Academic, 115–148.
Ono T, Ozasa S, Hasegawa F, Imai Y, 1977. Involvement of NADPH-cytochrome c reductase in the rat liver squalene epoxidase system. Biochim Biophys Acta 486: 401–407.
Schenkman JB, Jansson I, 1999. Interactions between cytochrome P450 monooxygenases and cytochrome b5. Drug Metab Rev 31: 351–364.
Nishino H, Ishibashi T, 2000. Evidence for requirement of NADPH-cytochrome P450 oxidoreductase in the microsomal NADPH-sterol delta7-reductase system. Arch Biochem Biophys 374: 293–298.
Wang J, Ortiz de Montellano PR, 2003. The binding sites on human heme oxygenase-1 for cytochrome P450 reductase and biliverdin reductase. J Biol Chem 278: 20069–20076.
Nelson D, 2009. The cytochrome P450 homepage. Hum Genomics 4: 59–65.
Lycett GJ, McLaughlin LA, Ranson H, Hemingway J, Kafatos FC, Loukeris TG, Paine MJ, 2006. Anopheles gambiae P450 reductase is highly expressed in oenocytes and in vivo knockdown increases permethrin susceptibility. Insect Mol Biol 15: 321–327.
Sarapusit S, Pethuan S, Rongnoparut P, 2010. Mosquito NADPH-cytochrome P450 oxidoreductase: kinetics and role of phenylalanine amino acid substitutions at Leu86 and Leu219 in CYP6AA3-mediated deltamethrin metabolism. Arch Insect Biochem Physiol 73: 232–244.
Zhu F, Sams S, Moural T, Haynes KF, Potter MF, Palli SR, 2012. RNA interference of NADPH-cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius. PLoS One 7: e31037.
Blariza MJ, Soria NW, Torres AG, Grosso CG, García BA, 2014. cDNA isolation and characterization of two vitellogenin genes in the Chagas’ disease vector Triatoma infestans (Hemiptera, Reduviidae). Gene 543: 118–124.
Blariza MJ, Leyria J, Canavoso LE, Soria NW, García BA, 2016. Dynamics of expression of two vitellogenin genes in the Chagas’ disease vector Triatoma infestans: analysis throughout pre-vitellogenesis and vitellogenesis. Acta Trop 156: 100–107.
Blariza MJ, Grosso CG, García BA, 2017. Silencing of two vitellogenin genes inhibits oviposition in the Chagas’ disease vector Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 97: 477–480.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729.
Livak KJ, Schmittgen TD, 2001. Análisis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402–408.
Toloza A, Germano M, Mougabure Cueto G, Vassena C, Zerba E, Picollo MI, 2008. Differential patterns of insecticide resistance in eggs and first instars of Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. J Med Entomol 45: 421–426.
Germano M, Picollo MI, Spillmann C, Mougabure Cueto G, 2014. Fenitrothion: an alternative insecticide for the control of deltamethrin-resistant populations of Triatoma infestans in northern Argentina. Med Vet Entomol 28: 21–25.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 663 | 602 | 16 |
Full Text Views | 487 | 6 | 0 |
PDF Downloads | 82 | 10 | 0 |