• 1.

    WHO, 2016. World Malaria Report 2016, 148. Available at: http://www.who.int/malaria/publications/world-malaria-report-2016/report/en/. Accessed July 7, 2017.

  • 2.

    Ojurongbe O, Akindele A, Adedokun S, Thomas B, 2016. Malaria: control, elimination, and eradication. Hum Parasit Dis 8: 1115.

  • 3.

    Kana IH, Adu B, Tiendrebeogo RW, Singh SK, Dodoo D, Theisen M, 2017. Naturally acquired antibodies target the glutamate-rich protein on intact merozoites and predict protection against febrile malaria. J Infect Dis 215: 623630.

    • Search Google Scholar
    • Export Citation
  • 4.

    Agnandji ST.; RTS,S Clinical Trials Partnership, 2012. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N Engl J Med 367: 22842295.

    • Search Google Scholar
    • Export Citation
  • 5.

    Theisen M, Soe S, Brunstedt K, Follmann F, Bredmose L, Israelsen H, Madsen SM, Druilhe P, 2004. A Plasmodium falciparum GLURP-MSP3 chimeric protein; expression in Lactococcus lactis, immunogenicity and induction of biologically active antibodies. Vaccine 22: 11881198.

    • Search Google Scholar
    • Export Citation
  • 6.

    Borre MB, Dziegiel M, Høgh B, Petersen E, Rieneck K, Riley E, Meis JF, Aikawa M, Nakamura K, Harada M, 1991. Primary structure and localization of a conserved immunogenic Plasmodium falciparum glutamate rich protein (GLURP) expressed in both the preerythrocytic and erythrocytic stages of the vertebrate life cycle. Mol Biochem Parasitol 49: 119131.

    • Search Google Scholar
    • Export Citation
  • 7.

    Theisen M, Soe S, Oeuvray C, Thomas AW, Vuust J, Danielsen S, Jepsen S, Druilhe P, 1998. The glutamate-rich protein (GLURP) of Plasmodium falciparum is a target for antibody-dependent monocyte-mediated inhibition of parasite growth in vitro. Infect Immun 66: 1117.

    • Search Google Scholar
    • Export Citation
  • 8.

    Theisen M, Vuust J, Gottschau A, Jepsen S, Høgh B, 1995. Antigenicity and immunogenicity of recombinant glutamate-rich protein of Plasmodium falciparum expressed in Escherichia coli. Clin Diagn Lab Immunol 2: 3034.

    • Search Google Scholar
    • Export Citation
  • 9.

    Dodoo D, Theisen M, Kurtzhals JA, Akanmori BD, Koram KA, Jepsen S, Nkrumah FK, Theander TG, Hviid L, 2000. Naturally acquired antibodies to the glutamate-rich protein are associated with protection against Plasmodium falciparum malaria. J Infect Dis 181: 12021205.

    • Search Google Scholar
    • Export Citation
  • 10.

    Mamo H, Esen M, Ajua A, Theisen M, Mordmüller B, Petros B, 2013. Humoral immune response to Plasmodium falciparum vaccine candidate GMZ2 and its components in populations naturally exposed to seasonal malaria in Ethiopia. Malar J 12: 51.

    • Search Google Scholar
    • Export Citation
  • 11.

    Theisen M., 2001. Selection of glutamate-rich protein long synthetic peptides for vaccine development: antigenicity and relationship with clinical protection and immunogenicity. Infect Immun 69: 52235229.

    • Search Google Scholar
    • Export Citation
  • 12.

    Adu B., 2016. Antibody levels against GLURP R2, MSP1 block 2 hybrid and AS202.11 and the risk of malaria in children living in hyperendemic (Burkina Faso) and hypo-endemic (Ghana) areas. Malar J 15: 123.

    • Search Google Scholar
    • Export Citation
  • 13.

    Meraldi V, Nebié I, Tiono AB, Diallo D, Sanogo E, Theisen M, Druilhe P, Corradin G, Moret R, Sirima BS, 2004. Natural antibody response to Plasmodium falciparum Exp-1, MSP-3 and GLURP long synthetic peptides and association with protection. Parasite Immunol 26: 265272.

    • Search Google Scholar
    • Export Citation
  • 14.

    Pratt-Riccio LR, Perce-da-Silva Dde S, Lima-Junior JC, Theisen M, Santos F, Daniel-Ribeiro CT, de Oliveira-Ferreira J, Banic DM, 2013. Genetic polymorphisms in the glutamate-rich protein of Plasmodium falciparum field isolates from a malaria-endemic area of Brazil. Mem Inst Oswaldo Cruz 108: 523528.

    • Search Google Scholar
    • Export Citation
  • 15.

    A-Elbasit IE, A-Elgadir TME, Elghazali G, Elbashir MI, Giha HA, 2007. Genetic fingerprints of parasites causing severe malaria in a setting of low transmission in Sudan. J Mol Microbiol Biotechnol 13: 8995.

    • Search Google Scholar
    • Export Citation
  • 16.

    Mlambo G, Sullivan D, Mutambu SL, Soko W, Mbedzi J, Chivenga J, Jaenisch T, Gemperli A, Kumar N, 2007. Analysis of genetic polymorphism in select vaccine candidate antigens and microsatellite loci in Plasmodium falciparum from endemic areas at varying altitudes. Acta Trop 102: 201205.

    • Search Google Scholar
    • Export Citation
  • 17.

    Montoya L, Maestre A, Carmona J, Lopes D, Do Rosario V, Blair S, 2003. Plasmodium falciparum: diversity studies of isolates from two Colombian regions with different endemicity. Exp Parasitol 104: 1419.

    • Search Google Scholar
    • Export Citation
  • 18.

    Gandhi K, Thera MA, Coulibaly D, Traoré K, Guindo AB, Ouattara A, Takala-Harrison S, Berry AA, Doumbo OK, Plowe CV, 2014. Variation in the circumsporozoite protein of Plasmodium falciparum: vaccine development implications. PLoS ONE 9: e101783.

    • Search Google Scholar
    • Export Citation
  • 19.

    Ocholla H., 2014. Whole-genome scans provide evidence of adaptive evolution in Malawian Plasmodium falciparum isolates. J Infect Dis. 210: 19912000.

    • Search Google Scholar
    • Export Citation
  • 20.

    Dechavanne C., 2017. Associations between an IgG3 polymorphism in the binding domain for FcRn, transplacental transfer of malaria-specific IgG3, and protection against Plasmodium falciparum malaria during infancy: a birth cohort study in Benin. PLOS Med 14: e1002403.

    • Search Google Scholar
    • Export Citation
  • 21.

    Vardo-Zalik AM, Zhou G, Zhong D, Afrane YA, Githeko AK, Yan G, 2013. Alterations in Plasmodium falciparum genetic structure two years after increased malaria control efforts in western Kenya. Am J Trop Med Hyg 88: 2936.

    • Search Google Scholar
    • Export Citation
  • 22.

    Escalante AA., 2015. Malaria molecular epidemiology: lessons from the international centers of excellence for malaria research network. Am J Trop Med Hyg 93 (3 Suppl): 7986.

    • Search Google Scholar
    • Export Citation
  • 23.

    Laufer MK, Plowe CV, 2004. Withdrawing antimalarial drugs: impact on parasite resistance and implications for malaria treatment policies. Drug Resist Updat 7: 279288.

    • Search Google Scholar
    • Export Citation
  • 24.

    Mohd Abd Razak MR., 2016. Genetic diversity of Plasmodium falciparum populations in malaria declining areas of Sabah, east Malaysia. PLoS One 11: e0152415.

    • Search Google Scholar
    • Export Citation
  • 25.

    Ojurongbe O, Ogungbamigbe TO, Fagbenro-Beyioku AF, Fendel R, Kremsner PG, Kun JF, 2007. Rapid detection of Pfcrt and Pfmdr1 mutations in Plasmodium falciparum isolates by FRET and in vivo response to chloroquine among children from Osogbo, Nigeria. Malar J 6: 41.

    • Search Google Scholar
    • Export Citation
  • 26.

    Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN, 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61: 315320.

    • Search Google Scholar
    • Export Citation
  • 27.

    Felger I, Snounou G, 2007. Recommended Genotyping Procedures (RGPs) to Identify Parasite Populations. Available at: http://www.who.int/malaria/publications/atoz/rgptext_sti.pdf?ua=1. Accessed February 6, 2017.

  • 28.

    Mwingira F, Nkwengulila G, Schoepflin S, Sumari D, Beck H-P, Snounou G, Felger I, Olliaro P, Mugittu K, 2011. Plasmodium falciparum msp1, msp2 and glurp allele frequency and diversity in sub-Saharan Africa. Malar J 10: 79.

    • Search Google Scholar
    • Export Citation
  • 29.

    Kumar S, Stecher G, Tamura K, 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 18701874.

    • Search Google Scholar
    • Export Citation
  • 30.

    Rozas J, 2009. DNA sequence polymorphism analysis using DnaSP. Posada D, ed. Bioinformatics for DNA Sequence Analysis; Methods in Molecular Biology Series. Totowa, NJ: Humana Press.

  • 31.

    Tajima F, 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585595.

  • 32.

    Fu YX, Li WH, 1993. Statistical tests of neutrality of mutations. Genetics 133: 693709.

  • 33.

    Turner L, Wang CW, Lavstsen T, Mwakalinga SB, Sauerwein RW, Hermsen CC, Theander TG, 2011. Antibodies against PfEMP1, RIFIN, MSP3 and GLURP are acquired during controlled Plasmodium falciparum malaria infections in naive volunteers. PLoS One 6: e29025.

    • Search Google Scholar
    • Export Citation
  • 34.

    Duru KC, Thomas BN, 2014. Genetic diversity and allelic frequency of glutamate-rich protein (GLURP) in Plasmodium falciparum isolates from sub-Saharan Africa. Microbiol Insights 7: 3539.

    • Search Google Scholar
    • Export Citation
  • 35.

    Ojurongbe O, Fagbenro-Beyioku AF, Adeyeba OA, Kun JF, 2011. Allelic diversity of merozoite surface protein 2 gene of P. falciparum among children in Osogbo, Nigeria. West Indian Med J 60: 1923.

    • Search Google Scholar
    • Export Citation
  • 36.

    Conway DJ, 2007. Molecular epidemiology of malaria. Clin Microbiol Rev 20: 188204.

  • 37.

    Yuan L., 2013. Plasmodium falciparum populations from northeastern Myanmar display high levels of genetic diversity at multiple antigenic loci. Acta Trop 125: 5359.

    • Search Google Scholar
    • Export Citation
  • 38.

    Kumar D, Dhiman S, Rabha B, Goswami D, Deka M, Singh L, Baruah I, Veer V, 2014. Genetic polymorphism and amino acid sequence variation in Plasmodium falciparum GLURP R2 repeat region in Assam, India, at an interval of five years. Malar J 13: 450.

    • Search Google Scholar
    • Export Citation
  • 39.

    Jongwutiwes S, Putaporntip C, Hughes AL, 2010. Bottleneck effects on vaccine-candidate antigen diversity of malaria parasites in Thailand. Vaccine 28: 31123117.

    • Search Google Scholar
    • Export Citation
  • 40.

    Robert F, Ntoumi F, Angel G, Candito D, Rogier C, Fandeur T, Sarthou JL, Mercereau-Puijalon O, 1996. Extensive genetic diversity of Plasmodium falciparum isolates collected from patients with severe malaria in Dakar, Senegal. Trans R Soc Trop Med Hyg 90: 704711.

    • Search Google Scholar
    • Export Citation
  • 41.

    de Stricker K, Vuust J, Jepsen S, Oeuvray C, Theisen M, 2000. Conservation and heterogeneity of the glutamate-rich protein (GLURP) among field isolates and laboratory lines of Plasmodium falciparum. Mol Biochem Parasitol 111: 123130.

    • Search Google Scholar
    • Export Citation
  • 42.

    Ndam NT, Basco LK, Ngane VF, Ayouba A, Ngolle EM, Deloron P, Peeters M, Tahar R, 2017. Reemergence of chloroquine-sensitive pfcrt K76 Plasmodium falciparum genotype in southeastern Cameroon. Malar J 16: 130.

    • Search Google Scholar
    • Export Citation
  • 43.

    Huang B., 2016. Prevalence of crt and mdr-1 mutations in Plasmodium falciparum isolates from Grande Comore island after withdrawal of chloroquine. Malar J 15: 414.

    • Search Google Scholar
    • Export Citation
  • 44.

    Kublin JG, Cortese JF, Njunju EM, Mukadam RAG, Wirima JJ, Kazembe PN, Djimdé AA, Kouriba B, Taylor TE, Plowe CV, 2003. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis 187: 18701875.

    • Search Google Scholar
    • Export Citation
  • 45.

    Zeeshan M., 2012. Genetic variation in the Plasmodium falciparum circumsporozoite protein in India and its relevance to RTS,S malaria vaccine. PLoS One 7: e43430.

    • Search Google Scholar
    • Export Citation

 

 

 

 

Genetic Diversity of the Plasmodium falciparum Glutamate-Rich Protein R2 Region Before and Twelve Years after Introduction of Artemisinin Combination Therapies among Febrile Children in Nigeria

View More View Less
  • 1 Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany;
  • 2 Department of Pediatrics, Stanford University School of Medicine, Stanford, California;
  • 3 Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria;
  • 4 Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikwe University, Akwa, Nigeria;
  • 5 Duy Tan University, Da Nang, Vietnam;
  • 6 Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, New York;
  • 7 Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo

The genetic diversity of glutamate-rich protein (GLURP) R2 region in Plasmodium falciparum isolates collected before and 12 years after the introduction of artemisinin combination treatment of malaria in Osogbo, Osun State, Nigeria, was compared in this study. Blood samples were collected on filter paper in 2004 and 2015 from febrile children from ages 1–12 years. The R2 region of the GLURP gene was genotyped using nested polymerase chain reaction and by nucleotide sequencing. In all, 12 GLURP alleles were observed in a total of 199 samples collected in the two study years. The multiplicity of infection (MOI) marginally increased over the two study years; however, the differences were statistically insignificant (2004 samples MOI = 1.23 versus 2015 samples MOI = 1.47). Some alleles were stable in their prevalence, whereas two GLURP alleles, VIII and XI, showed considerable variability between both years. This variability was replicated when GLURP sequences from other regions were compared with ours. The expected heterozygosity (He) values (He = 0.87) were identical for the two groups. High variability in the rearrangement of the amino acid repeat units in the R2 region were observed, with the amino acid repeat sequence DKNEKGQHEIVEVEEILPE more prevalent in both years, compared with the two other repeat sequences observed in the study. The parasite population characterized in this study displayed extensive genetic diversity. The detailed genetic profile of the GLURP R2 region has the potential to help guide further epidemiological studies aimed toward the rational design of novel chemotherapies that are antagonistic toward malaria.

Author Notes

Address correspondence to Olusola Ojurongbe, Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, P.M.B 4400 Osogbo, Osun State, Nigeria. E-mail: oojurongbe@lautech.edu.ng

These authors contributed equally to this work.

Financial support: O. O. is a recipient of the Deutscher Akademischer Austausch Dienst (DAAD) Re-invitation Programme for Former Scholarship Holders, 2015 (50068612).

Authors’ addresses: Christian N. Nguetse, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, E-mail: christiannguetse@gmail.com. Johnson Adeyemi Ojo, Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria, E-mail: johniyem13@gmail.com. Charles Nchotebah, Christian G. Meyer, and Thirumalaisamy P. Velavan, Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany, E-mails: nncharly@yahoo.com, christian.g.meyer@gmail.com, and velavan@medizin.uni-tuebingen.de. Moses Nkechukwu Ikegbunam, Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikwe University, Akwa, Nigeria, E-mail: mn.ikegbunam@unizik.edu.ng. Bolaji N. Thomas, Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, E-mail: bntsbi@rit.edu. Olusola Ojurongbe, Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria, E-mail: oojurongbe@lautech.edu.ng.

Save