Parasite–Vector Interaction of Chagas Disease: A Mini-Review

Ana Beatriz Bortolozo de Oliveira Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho,” IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil;

Search for other papers by Ana Beatriz Bortolozo de Oliveira in
Current site
Google Scholar
PubMed
Close
,
Kaio Cesar Chaboli Alevi Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho,” IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil;
Departamento de Biologia e Zootecnia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista “Júlio de Mesquita Filho,” FEIS/UNESP, Ilha Solteira, São Paulo, Brazil

Search for other papers by Kaio Cesar Chaboli Alevi in
Current site
Google Scholar
PubMed
Close
,
Carlos Henrique Lima Imperador Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho,” IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil;

Search for other papers by Carlos Henrique Lima Imperador in
Current site
Google Scholar
PubMed
Close
,
Fernanda Fernandez Madeira Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho,” IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil;

Search for other papers by Fernanda Fernandez Madeira in
Current site
Google Scholar
PubMed
Close
, and
Maria Tercília Vilela de Azeredo-Oliveira Laboratório de Biologia Celular, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho,” IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil;

Search for other papers by Maria Tercília Vilela de Azeredo-Oliveira in
Current site
Google Scholar
PubMed
Close
Restricted access

Trypanosoma cruzi is a protozoan of great importance to public health: it has infected millions of people in the world and is the etiologic agent of Chagas disease, which can cause cardiac and gastrointestinal disorders in patients and may even lead to death. The main vector of transmission of this parasite is triatomine bugs, which have a habit of defecating while feeding on blood and passing the parasite to their own hosts through their feces. Although it has been argued that T. cruzi is not pathogenic for this vector, other studies indicate that the success of the infection depends on several molecules and factors, including the insect’s intestinal microbiota, which may experience changes as a result of infection that include decreased fitness. Moreover, the effects of infection depend on the insect species, the parasite strain, and environmental conditions involved. However, the parasite–vector interaction is still underexplored. A deeper understanding of this relationship is an important tool for discovering new approaches to T. cruzi transmission and Chagas disease.

Author Notes

Address correspondence to Kaio Cesar Chaboli Alevi, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho,” IBILCE/UNESP, Rua Cristóvão Colombo 2265, São José do Rio Preto 15054-000, São Paulo, Brazil. E-mail: kaiochaboli@hotmail.com

Authors’ addresses: Ana Beatriz Bortolozo de Oliveira, Kaio Cesar Chaboli Alevi, Carlos Henirque Lima Imperador, Fernanda Fernandez Madeira, and Maria Tercília Vilela de Azeredo-Oliveira, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São José do Rio Preto, São Paulo, Brazil, E-mails: anabbortolozo@gmail.com, kaiochaboli@hotmail.com, karlosimpe@gmail.com, fernanda.bio56@hotmail.com, and tercilia@ibilce.unesp.br.

  • 1.

    Chagas C, 1909. Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1: 159218.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Liñares GEG, Ravaschino EL, Rodriguez JB, 2006. Progresses in the field of drug design to combat tropical protozoan parasitic diseases. Curr Med Chem 13: 335360.

  • 3.

    World Health Organization, 2015. Chagas disease (American trypanosomiasis). Wkly Epidemiol Rec 90: 3344.

  • 4.

    Rassi A Jr, Marin-Neto JA, 2010. Chagas disease. Lancet 375: 13881402.

  • 5.

    Rodriguez JB, Falcone BN, Szajnman SH, 2016. Detection and treatment of Trypanosoma cruzi: a patent review (2011–2015). Expert Opin Ther Pat 26: 9931015.

  • 6.

    Soriano-Arandes A, Angheben A, Serre-Delcor N, Treviño-Maruri B, Gomez i Prat J, Jackson Y, 2016. Control and management of congenital Chagas disease in Europe and other non-endemic countries: current policies and practices. Trop Med Int Health 21: 590596.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Angheben A, Boix L, Buonfrate D, Gobbi F, Bisoffi Z, Pupella S, Gandini G, Aprili G, 2015. Chagas disease and transfusion medicine: a perspective from non-endemic countries. Blood Transfus 13: 540550.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Howard EJ, Xiong X, Carlier Y, Sosa-Estani S, Buekens P, 2014. Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. BJOG An Int J Obstet Gynaecol 121: 2233.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Feder D, Gomes SAO, Freitas SC, Santos-Machado G, Santos-Mallet JR, 2014. The ultrastructural studies in parasite-vectors interactions. Méndez-Vilas A, ed. Microscopy: Advances in Scientific Research and Education. Spain: Formatex Research Center, 564–569.

    • PubMed
    • Export Citation
  • 10.

    Jurberg J, Galvão C, 2006. Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae), vectors of Chagas disease, and implications for human health. Biol Linz 50: 10961116.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Galvão C, 2014. Vetores Da Doença de Chagas No Brasil. Curitiba, Brazil: Sociedade Brasileira de Zoologia.

    • PubMed
    • Export Citation
  • 12.

    Alevi KCC, Reis YV, Guerra AL, Imperador CHL, Banho CA, Moreira FFF, Azeredo-Oliveira MTV, 2016. Would Nesotriatoma bruneri Usinger, 1944 be a valid species? Zootaxa 4103: 396400.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Mendonça VJ, Alevi KCC, Pinotti H, Gurgel-Goncalves R, Pita S, Guerra AL, Panzera F, Araujo RF, Azeredo-Oliveira MTV, Da Rosa JA, 2016. Revalidation of Triatoma bahiensis Sherlock & Serafim, 1967 (Hemiptera: Reduviidae) and phylogeny of the T. brasiliensis species complex. Zootaxa 4107: 239254.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Souza ES, Von Atzingen NCB, Furtado MB, Oliveira J, Nascimento JD, Vendrami DP, Gardim S, Rosa JA, 2016. Description of Rhodnius marabaensis sp. n. (Hemiptera, Reduviidae, Triatominae) from Pará State, Brazil. ZooKeys 621: 4562.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Rosa JA, Justino HHG, Nascimento JD, Mendonça VJ, Rocha CS, de Carvalho DB, Falcone R, Oliveira MTVA, Alevi KCC, de Oliveira J, 2017. A new species of Rhodnius from Brazil (Hemiptera, Reduviidae, Triatominae). ZooKeys 675: 125.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Perlowagora-Szumlewicz A, Muller CA, Moreira CJC, 1990. Studies in search of a suitable experimental insect model for xenodiagnosis of hosts with chagas’ disease 4—the reflection of parasite stock in the responsiveness of different vector species to chronic infection with different Trypanosoma cruzi stocks. Rev Saude Publica 24: 165177.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Zingales B et al. 2012. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12: 240253.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Marcili A, Lima L, Cavazzana M, Junqueira AC, Veludo HH, Maia Da Silva F, Campaner M, Paiva F, Nunes VL, Teixeira MM, 2009. A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA. Parasitology 136: 641655.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Zingales B et al. 2009. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104: 10511054.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lima MM, Pereira JB, Santos JAA, Pinto ZT, Braga MV, 1992. Development and reproduction of Panstrongylus megistus (Hemiptera: Reduviidae) infected with Trypanosoma cruzi, under laboratory conditions. Ann Entomol Soc Am 85: 458461.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Fellet MR, Lorenzo MG, Elliot SL, Carrasco D, Guarneri AA, 2014. Effects of infection by Trypanosoma cruzi and Trypanosoma rangeli on the reproductive performance of the vector Rhodnius prolixus. PLoS One 9: 2632.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Gumiel M, Mota FF, Rizzo VS, Sarquis O, Castro DP, Lima MM, Garcia ES, Carels N, Azambuja P, 2015. Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods. Parasit Vectors 8: 117.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Buarque DS, Gomes CM, Araújo RN, Pereira MH, Ferreira RC, Guarneri AA, Tanaka AS, 2016. A new antimicrobial protein from the anterior midgut of Triatoma infestans mediates Trypanosoma cruzi establishment by controlling the microbiota. Biochimie 123: 138143.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Mesquita RD et al. 2016. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci USA 113: 1493614941.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Dias FA et al. 2015. Monitoring of the parasite load in the digestive tract of Rhodnius prolixus by combined qPCR analysis and imaging techniques provides new insights into the trypanosome life cycle. PLoS Negl Trop Dis 9: 123.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Nogueira NP et al. 2015. Proliferation and differentiation of Trypanosoma cruzi inside its vector have a new trigger: redox status. PLoS One 10: 116.

  • 27.

    Lara FA et al. 2007. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes. Biochem Biophys Res Commun 355: 1622.

  • 28.

    Paes MC, Cosentino-Gomes D, de Souza CF, Nogueira NP, Meyer-Fernandes JR, 2011. The role of heme and reactive oxygen species in proliferation and survival of Trypanosoma cruzi. J Parasitol Res 2011: 18.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Schaub GA, Lösch P, 1988. Trypanosoma cruzi: origin of metacyclic trypomastigotes in the urine of the vector Triatoma infestans. Exp Parasitol 65: 174186.

  • 30.

    Schaub GA, 1988. Developmental time and mortality with Trypanosoma cruzi of larvae of Triatoma infestans infected. Trans R Soc Med Hyg 82: 9496.

  • 31.

    Kollien AH, Schmidt J, Schaub GA, 1998. Modes of association of Trypanosoma cruzi with the intestinal tract of the vector Triatoma infestans. Acta Trop 70: 127141.

  • 32.

    Botto-Mahan C, Cattan PE, Medel R, 2006. Chagas disease parasite induces behavioural changes in the kissing bug Mepraia spinolai. Acta Trop 98: 219223.

  • 33.

    Guarneri AA, Lorenzo MG, 2017. Triatomine physiology in the context of trypanosome infection. J Insect Physiol 97: 6676.

  • 34.

    Nouvellet P, Ramirez-Sierra MJ, Dumonteil E, Gourbière S, 2011. Effects of genetic factors and infection status on wing morphology of Triatoma dimidiata species complex in the Yucatán peninsula, Mexico. Infect Genet Evol 11: 12431249.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Cortez MR, Provençano A, Silva CE, Mello CB, Zimmermann LT, Schaub GA, Garcia ES, Azambuja P, Gonzalez MS, 2012. Trypanosoma cruzi: effects of azadirachtin and ecdysone on the dynamic development in Rhodnius prolixus larvae. Exp Parasitol 131: 363371.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Azambuja P, Garcia ES, 1992. Effects of azadirachtin on Rhodnius prolixus: immunity and Trypanosoma interaction. Mem Inst Oswaldo Cruz 87: 6972.

  • 37.

    Garcia ES, Genta FA, Azambuja P, Schaub GA, 2010. Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol 26: 499505.

  • 38.

    Caradonna KL, Engel JC, Jacobi D, Lee CH, Burleigh BA, 2013. Host metabolism regulates intracellular growth of Trypanosoma cruzi. Cell Host Microbe 13: 108117.

  • 39.

    Gourbière S, Dorn P, Tripet F, Dumonteil E, 2012. Genetics and evolution of triatomines: from phylogeny to vector control. Heredity 108: 190202.

Past two years Past Year Past 30 Days
Abstract Views 2965 2561 66
Full Text Views 1341 15 0
PDF Downloads 548 12 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save