Origin of a High-Latitude Population of Aedes aegypti in Washington, DC

Andrea Gloria-Soria Yale University, New Haven, Connecticut;

Search for other papers by Andrea Gloria-Soria in
Current site
Google Scholar
PubMed
Close
,
Andrew Lima Fairfax County Health Department, Disease Carrying Insects Program, Fairfax, Virginia;

Search for other papers by Andrew Lima in
Current site
Google Scholar
PubMed
Close
,
Diane D. Lovin Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana

Search for other papers by Diane D. Lovin in
Current site
Google Scholar
PubMed
Close
,
Joanne M. Cunningham Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana

Search for other papers by Joanne M. Cunningham in
Current site
Google Scholar
PubMed
Close
,
David W. Severson Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana

Search for other papers by David W. Severson in
Current site
Google Scholar
PubMed
Close
, and
Jeffrey R. Powell Yale University, New Haven, Connecticut;

Search for other papers by Jeffrey R. Powell in
Current site
Google Scholar
PubMed
Close
Restricted access

An overwintering population of Aedes aegypti has been documented in the Capitol Hill neighborhood of Washington, DC, since 2011. Mitochondrial cytochrome oxidase I (mtCOI) sequence data presented in a previous study traced the origin to the New World. Here, we use microsatellite and 14,071 single nucleotide polymorphisms along with mitochondrial DNA (mtDNA) sequences on Washington Ae. aegypti samples and samples from potential sources to further narrow the origin of this population. Genetically, Washington Ae. aegypti are closest to populations in Florida, meaning this is the most likely source. Florida experienced the first mosquito-borne transmission of dengue in the United States after decades of absence of this disease, as well as local transmission of chikungunya and Zika in recent years. This suggests that the Capitol Hill, Washington, DC population of Ae. aegypti is capable of transmitting viruses such as dengue, chikungunya, and Zika in modern US city environments.

    • Supplemental Materials (PDF 1383 KB)

Author Notes

Address correspondence to Andrea Gloria-Soria, Yale University, 21 Sachem Street, New Haven, CT 06520-8105. E-mail: andrea.gloria-soria@yale.edu

Authors’ addresses: Andrea Gloria-Soria and Jeffrey R. Powell, Yale University, New Haven, CT, E-mails: andrea.gloria-soria@yale.edu and jeffrey.powell@yale.edu. Andrew Lima, Fairfax County Health Department, Disease Carrying Insects Program, Fairfax, VA, E-mail: andrew.lima@fairfaxcounty.gov. Diane D. Lovin, Joanne M. Cunningham, and David W. Severson, Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, E-mails: dlovin@nd.edu, joanne.m.cunningham.55@nd.edu, and dseverso@nd.edu.

Financial support: Genetic analyses at Yale were supported by NIH NIAID grant RO1 AI101112 and at the University of Notre Dame by NIH NIAID grant R56 AI079125-A1. Kirk Smith provided the documentation of subterranean Aedes aegypti in Arizona.

  • 1.

    Christophers SR, 1960. Aedes aegypti (L.) the Yellow Fever Mosquito: Its Life History, Bionomics and Structure. New York, NY: Cambridge University Press.

    • PubMed
    • Export Citation
  • 2.

    Lima A, Lovin DD, Hickner PV, Severson DW, 2015. Evidence for an overwintering population of Aedes aegypti in Capitol Hill neighborhood, Washington, DC. Am J Trop Med Hyg 94: 231235.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Patterson KD, 1992. Yellow fever epidemics and mortality in the United States, 1693–1905. Soc Sci Med 34: 855865.

  • 4.

    Tabachnick WJ, Wallis GP, Aitken THG, Miller BR, Amato GD, Lorenz L, Powell JR, Beaty BJ, 1985. Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations. Am J Trop Med Hyg 34: 12191224.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Tesh RB, Gubler DJ, Rosen L, 1976. Variation among goegraphic strains of Aedes albopictus in susceptibility to infection with chikungunya virus. Am J Trop Med Hyg 25: 326335.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bennett KE, Olson KE, Munoz M de L, Fernandez-Salas I, Farfan-Ale JA, Higgs S, Black WC 4th, Beaty BJ, 2002. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67: 8592.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Failloux A-B, Vazeille M, Rodhain F, 2002. Geographic genetic variation in populations of the dengue virus vector Aedes aegypti. J Mol Evol 55: 653663.

  • 8.

    Gloria-Soria A, Armstrong PM, Powell JR, Turner PE, 2017. Infection rate of Aedes aegypti mosquitoes with dengue virus depends on the interaction between temperature and mosquito genotype. Proc R Soc B Biol Sci 284: 1864.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Chouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R, Goindin D, Dupont-Rouzeyrol M, LourenÁo-de-Oliveira R, Failloux A-B, 2016. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Negl Trop Dis 10: e0004543.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Zouache K, Fontaine A, Vega-Rua A, Mousson L, Thiberge J-M, Lourenco-De-Oliveira R, Caro V, Lambrechts L, Failloux A-B, 2014. Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proc R Soc London B Biol Sci 281: 1792. doi:10.1098/rspb.2014.1078.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Deming R, Manrique-Saide P, Barreiro AM, Cardeña EUK, Che-Mendoza A, Jones B, Liebman K, Vizcaino L, Vazquez-Prokopec G, Lenhart A, 2016. Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasit Vectors 9: 67.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Martins AJ, Lima JBP, Peixoto AA, Valle D, 2009. Frequency of Val1016Ile mutation in the voltage‐gated sodium channel gene of Aedes aegypti Brazilian populations. Trop Med Int Health 14: 13511355.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Linss JGB, Brito LP, Garcia GA, Araki AS, Bruno RV, Lima JP, Valle D, Martins AJ, 2014. Distribution and dissemination of the Val1016Ile and Phe1534Cys Kdr mutations in Aedes aegypti Brazilian natural populations. Parasit Vectors 7: 25.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Powell JR, Tabachnick WJ, Arnold J, 1980. Genetics and the origin of a vector population: Aedes aegypti, a case study. Science 208: 13851387.

  • 15.

    Gloria-Soria A et al. 2016. Global genetic diversity of Aedes aegypti. Mol Ecol 25: 53775395.

  • 16.

    Brown JE et al. 2011. Worldwide patterns of genetic differentiation imply multiple “domestications” of Aedes aegypti, a major vector of human diseases. Proc Biol Sci 278: 24462454.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gloria-Soria A, Kellner DA, Brown JE, Gonzalez-Acosta C, Kamgang B, Lutwama J, Powell JR, 2016. Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations. Med Vet Entomol 30: 235240.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Brown JE, Scholte E-J, Dik M, Den Hartog W, Beeuwkes J, Powell JR, 2011. Aedes aegypti mosquitoes imported into the Netherlands, 2010. Emerg Infect Dis 17: 23352337.

  • 19.

    Gloria-Soria A, Brown JE, Kramer V, Hardstone Yoshimizu M, Powell JR, 2014. Origin of the dengue fever mosquito, Aedes aegypti, in California. PLoS Negl Trop Dis 8: e3029.

  • 20.

    Evans BR, Gloria-Soria A, Hou L, McBride C, Bonizzoni M, Zhao H, Powell JRA, 2015. Multipurpose, high-throughput single-nucleotide polymorphism chip for the dengue and yellow fever mosquito, Aedes aegypti. G3 (Bethesda) 5: 711718.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kotsakiozi P, Gloria-Soria A, Caccone A, Evans B, Schama R, Martins AJ, Powell JR, 2017. Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses. PLoS Negl Trop Dis 11: e0005653.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Saarman NP, Gloria‐Soria A, Anderson EC, Evans BR, Pless E, Cosme L V, Gonzalez‐Acosta C, Kamgang B, Wesson DM, Powell JR. Effective population sizes of a major vector of human diseases, Aedes aegypti. Evol Appl 10: 10311039.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Pless E, Gloria-Soria A, Evans BR, Kramer V, Bolling BG, Tabachnick WJ, Powell JR, 2017. Multiple introductions of the dengue vector, Aedes aegypti, into California. PLoS Negl Trop Dis 11: e0005718.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ, 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4: 7.

  • 25.

    Kalinowski ST, 2005. hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5: 187189.

  • 26.

    Peakall ROD, Smouse PE, 2006. genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6: 288295.

  • 27.

    Pritchard JK, Wen W, Falush D, 2003. Documentation for structure software: version 2. Available at: https://web.standford.edu/pritchardlab/structure/release_versions/v2.3.4/structure_doc.pdf.

    • PubMed
    • Export Citation
  • 28.

    Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959.

  • 29.

    Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 26112620.

  • 30.

    Earl DA, 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4: 359361.

  • 31.

    Rosenberg NA, 2004. DISTRUCT: a program for the graphical display of population structure. Mol Ecol Resour 4: 137138.

  • 32.

    Alexander DH, Lange K, 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics 12: 246.

  • 33.

    Puechmaille SJ, 2016. The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol Ecol Resour 16: 608627.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Wang J, 2017. The computer program STRUCTURE for assigning individuals to populations: easy to use but easier to misuse. Mol Ecol Resour 17: 981990.

  • 35.

    Nazareno AG, Bemmels JB, Dick CW, Lohmann LG, 2017. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol Ecol Resour 17: 11361147.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Willing EVA, Bentzen P, Van Oosterhout C, Hoffmann M, Cable J, Breden F, Weigel D, Dreyer C, 2010. Genome‐wide single nucleotide polymorphisms reveal population history and adaptive divergence in wild guppies. Mol Ecol 19: 968984.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A, 2004. GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95: 536539.

  • 38.

    Rannala B, Mountain JL, 1997. Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94: 91979201.

  • 39.

    Nei M, 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70: 33213323.

  • 40.

    Jombart T, 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 14031405.

  • 41.

    R Core Team, 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.r-project.org/. Accessed October 2017.

    • PubMed
    • Export Citation
  • 42.

    Frichot E, François O, 2015. LEA: an R package for landscape and ecological association studies. Methods Ecol Evol 6: 925929.

  • 43.

    Stamatakis A, 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 13121313.

  • 44.

    Vrijenhoek R, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3: 294299.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Sievers F et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 7: 539.

  • 46.

    Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R, 2010. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38 (Web Server issue):W695W699.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Kumar S, Stecher G, Tamura K, 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 18701874.

  • 48.

    Giraldo-Calderón GI, Emrich SJ, MacCallum RM, Maslen G, Dialynas E, Topalis P, Ho N, Gesing S, Madey G, Collins FH, 2014. VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res 43: D707D713.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    VectorBase. National Institute of Allergy and Infectious Diseases (NIAID) Bioinformatics Resource Center (BRC). Available at: https://www.vectorbase.org/. Accessed October 2017.

    • PubMed
    • Export Citation
  • 50.

    Radke EG et al. 2012. Dengue outbreak in Key West, Florida, USA, 2009. Emerg Infect Dis 18: 135137.

  • 51.

    CDC, 2017. Centers for Disease Control and Prevention (United States Government). Available at: https://www.cdc.gov/. Accessed July 26, 2017.

    • PubMed
    • Export Citation
  • 52.

    Beach M, River L, 2017. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 546: 401405.

  • 53.

    Disease Maps Dynamic Map Viewer, 2015. United States Geological Survey (USGS). U.S. Department of Interior. Available at: https://diseasemaps.usgs.gov/. Accessed July 26, 2017.

    • PubMed
    • Export Citation
  • 54.

    Paploski IAD, Rodrigues MS, Mugabe VA, Kikuti M, Tavares AS, Reis MG, Kitron U, Ribeiro GS, 2016. Storm drains as larval development and adult resting sites for Aedes aegypti and Aedes albopictus in Salvador, Brazil. Parasit Vectors 9: 419.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Manrique-Saide P, Uc V, Prado C, Carmona C, Vadillo J, Chan R, Dzib-Florez S, Che-Mendoza A, Barrera-Perez M, Sanchez EC, 2012. Storm sewers as larval habitats for Aedes aegypti and Culex spp. in a neighborhood of Merida, Mexico. J Am Mosq Control Assoc 28: 255257.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Metzger ME, Hardstone Yoshimizu M, Padgett KA, Hu R, Kramer VL, 2017. Detection and establishment of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) mosquitoes in California, 2011–2015. J Med Entomol 54: 533543.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Barrera R, Amador M, Diaz A, Smith J, Munoz-Jordan JL, Rosario Y, 2008. Unusual productivity of Aedes aegypti in septic tanks and its implications for dengue control. Med Vet Entomol 22: 6269.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Chadee DD, Martinez R, 2016. Aedes aegypti (L.) in Latin American and Caribbean region: with growing evidence for vector adaptation to climate change? Acta Trop 156: 137143.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Mackay AJ, Amador M, Diaz A, Smith J, Barrera R, 2009. Dynamics of Aedes aegypti and Culex quinquefasciatus in septic tanks. J Am Mosq Control Assoc 25: 409416.

  • 60.

    Somers G, Brown JE, Barrera R, Powell JR, 2011. Genetics and morphology of Aedes aegypti (Diptera: Culicidae) in septic tanks in Puerto Rico. J Med Entomol 48: 10951102.

Past two years Past Year Past 30 Days
Abstract Views 404 232 21
Full Text Views 879 12 3
PDF Downloads 240 13 1
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save