• 1.

    Yeka A et al. 2016. Artesunate/amodiaquine versus artemether/lumefantrine for the treatment of uncomplicated malaria in Uganda: a randomized trial. J Infect Dis 213: 11341142.

    • Search Google Scholar
    • Export Citation
  • 2.

    Yeka A, Dorsey G, Kamya MR, Talisuna A, Lugemwa M, Rwakimari JB, Staedke SG, Rosenthal PJ, Wabwire-Mangen F, Bukirwa H, 2008. Artemether-lumefantrine versus dihydroartemisinin-piperaquine for treating uncomplicated malaria: a randomized trial to guide policy in Uganda. PLoS One 3: e2390.

    • Search Google Scholar
    • Export Citation
  • 3.

    Conrad MD et al. 2014. Comparative impacts over 5 years of artemisinin-based combination therapies on Plasmodium falciparum polymorphisms that modulate drug sensitivity in Ugandan children. J Infect Dis 210: 344353.

    • Search Google Scholar
    • Export Citation
  • 4.

    Tumwebaze P et al. 2016. Changing antimalarial drug resistance patterns identified by surveillance at three sites in Uganda. J Infect Dis 215: 631635.

    • Search Google Scholar
    • Export Citation
  • 5.

    Tumwebaze P et al. 2015. Impact of antimalarial treatment and chemoprevention on the drug sensitivity of malaria parasites isolated from Ugandan children. Antimicrob Agents Chemother 59: 30183030.

    • Search Google Scholar
    • Export Citation
  • 6.

    Djimde A et al. 2001. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 344: 257263.

  • 7.

    Duraisingh MT, Cowman AF, 2005. Contribution of the pfmdr1 gene to antimalarial drug-resistance. Acta Trop 94: 181190.

  • 8.

    Mwai L, Kiara SM, Abdirahman A, Pole L, Rippert A, Diriye A, Bull P, Marsh K, Borrmann S, Nzila A, 2009. In vitro activities of piperaquine, lumefantrine, and dihydroartemisinin in Kenyan Plasmodium falciparum isolates and polymorphisms in pfcrt and pfmdr1. Antimicrob Agents Chemother 53: 50695073.

    • Search Google Scholar
    • Export Citation
  • 9.

    Sisowath C, Stromberg J, Martensson A, Msellem M, Obondo C, Bjorkman A, Gil JP, 2005. In vivo selection of Plasmodium falciparum pfmdr1 86N coding alleles by artemether-lumefantrine (Coartem). J Infect Dis 191: 10141017.

    • Search Google Scholar
    • Export Citation
  • 10.

    Zongo I, Dorsey G, Rouamba N, Tinto H, Dokomajilar C, Guiguemde RT, Rosenthal PJ, Ouedraogo JB, 2007. Artemether-lumefantrine versus amodiaquine plus sulfadoxine-pyrimethamine for uncomplicated falciparum malaria in Burkina Faso: a randomised non-inferiority trial. Lancet 369: 491498.

    • Search Google Scholar
    • Export Citation
  • 11.

    Gregson A, Plowe CV, 2005. Mechanisms of resistance of malaria parasites to antifolates. Pharmacol Rev 57: 117145.

  • 12.

    Arinaitwe E et al. 2013. Intermittent preventive therapy with sulfadoxine-pyrimethamine for malaria in pregnancy: a cross-sectional study from Tororo, Uganda. PLoS One 8: e73073.

    • Search Google Scholar
    • Export Citation
  • 13.

    Rosenthal PJ, 2013. The interplay between drug resistance and fitness in malaria parasites. Mol Microbiol 89: 10251038.

  • 14.

    Andersson DI, Hughes D, 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8: 260271.

  • 15.

    Wargo AR, Kurath G, 2012. Viral fitness: definitions, measurement, and current insights. Curr Opin Virol 2: 538545.

  • 16.

    Peters JM, Chen N, Gatton M, Korsinczky M, Fowler EV, Manzetti S, Saul A, Cheng Q, 2002. Mutations in cytochrome b resulting in atovaquone resistance are associated with loss of fitness in Plasmodium falciparum. Antimicrob Agents Chemother 46: 24352441.

    • Search Google Scholar
    • Export Citation
  • 17.

    Hayward R, Saliba KJ, Kirk K, 2005. pfmdr1 mutations associated with chloroquine resistance incur a fitness cost in Plasmodium falciparum. Mol Microbiol 55: 12851295.

    • Search Google Scholar
    • Export Citation
  • 18.

    Preechapornkul P, Imwong M, Chotivanich K, Pongtavornpinyo W, Dondorp AM, Day NP, White NJ, Pukrittayakamee S, 2009. Plasmodium falciparum pfmdr1 amplification, mefloquine resistance, and parasite fitness. Antimicrob Agents Chemother 53: 15091515.

    • Search Google Scholar
    • Export Citation
  • 19.

    Ochong E, Tumwebaze PK, Byaruhanga O, Greenhouse B, Rosenthal PJ, 2013. Fitness consequences of Plasmodium falciparum pfmdr1 polymorphisms inferred from ex vivo culture of Ugandan parasites. Antimicrob Agents Chemother 57: 42454251.

    • Search Google Scholar
    • Export Citation
  • 20.

    Rosario VE, Hall R, Walliker D, Beale GH, 1978. Persistence of drug-resistant malaria parasites. Lancet 1: 185187.

  • 21.

    Shinondo CJ, Lanners HN, Lowrie RC Jr, Wiser MF, 1994. Effect of pyrimethamine resistance on sporogony in a Plasmodium berghei/Anopheles stephensi model. Exp Parasitol 78: 194202.

    • Search Google Scholar
    • Export Citation
  • 22.

    Kublin JG, Cortese JF, Njunju EM, Mukadam RA, Wirima JJ, Kazembe PN, Djimde AA, Kouriba B, Taylor TE, Plowe CV, 2003. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis 187: 18701875.

    • Search Google Scholar
    • Export Citation
  • 23.

    Wang X, Mu J, Li G, Chen P, Guo X, Fu L, Chen L, Su X, Wellems TE, 2005. Decreased prevalence of the Plasmodium falciparum chloroquine resistance transporter 76T marker associated with cessation of chloroquine use against P. falciparum malaria in Hainan, People’s Republic of China. Am J Trop Med Hyg 72: 410414.

    • Search Google Scholar
    • Export Citation
  • 24.

    Ord R, Alexander N, Dunyo S, Hallett R, Jawara M, Targett G, Drakeley CJ, Sutherland CJ, 2007. Seasonal carriage of pfcrt and pfmdr1 alleles in Gambian Plasmodium falciparum imply reduced fitness of chloroquine-resistant parasites. J Infect Dis 196: 16131619.

    • Search Google Scholar
    • Export Citation
  • 25.

    Mharakurwa S, Kumwenda T, Mkulama MA, Musapa M, Chishimba S, Shiff CJ, Sullivan DJ, Thuma PE, Liu K, Agre P, 2011. Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes. Proc Natl Acad Sci U S A 108: 1879618801.

    • Search Google Scholar
    • Export Citation
  • 26.

    Mharakurwa S, Sialumano M, Liu K, Scott A, Thuma P, 2013. Selection for chloroquine-sensitive Plasmodium falciparum by wild Anopheles arabiensis in southern Zambia. Malar J 12: 453.

    • Search Google Scholar
    • Export Citation
  • 27.

    Mendes C, Salgueiro P, Gonzalez V, Berzosa P, Benito A, do Rosario VE, de Sousa B, Cano J, Arez AP, 2013. Genetic diversity and signatures of selection of drug resistance in Plasmodium populations from both human and mosquito hosts in continental Equatorial Guinea. Malar J 12: 114.

    • Search Google Scholar
    • Export Citation
  • 28.

    Kamya MR et al. 2015. Malaria transmission, infection, and disease at three sites with varied transmission intensity in Uganda: implications for malaria control. Am J Trop Med Hyg 92: 903912.

    • Search Google Scholar
    • Export Citation
  • 29.

    Kilama M et al. 2014. Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda. Malar J 13: 111.

    • Search Google Scholar
    • Export Citation
  • 30.

    Muhindo MK et al. 2016. Reductions in malaria in pregnancy and adverse birth outcomes following indoor residual spraying of insecticide in Uganda. Malar J 15: 437.

    • Search Google Scholar
    • Export Citation
  • 31.

    Gillies MT, Coetzee M, 1987. A Supplement to the Anophelinae of Africa South of the Sahara. Johannesburg, South Africa: The South African Institute for Medical Research.

    • Search Google Scholar
    • Export Citation
  • 32.

    Gillies MT, DeMeillon B, 1968. The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region). Johannesburg, South Africa: The South African Institute for Medical Research.

    • Search Google Scholar
    • Export Citation
  • 33.

    Britton S, Cheng Q, Sutherland CJ, McCarthy JS, 2015. A simple, high-throughput, colourimetric, field applicable loop-mediated isothermal amplification (HtLAMP) assay for malaria elimination. Malar J 14: 335.

    • Search Google Scholar
    • Export Citation
  • 34.

    Scott JA, Brogdon WG, Collins FH, 1993. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49: 520529.

    • Search Google Scholar
    • Export Citation
  • 35.

    Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE, 1995. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg 52: 565568.

    • Search Google Scholar
    • Export Citation
  • 36.

    LeClair NP, Conrad MD, Baliraine FN, Nsanzabana C, Nsobya S, Rosenthal PJ, 2013. Optimization of a ligase detection reaction-fluorescent microsphere assay for characterization of resistance-mediating polymorphisms in African samples of Plasmodium falciparum. J Clin Microbiol 51: 25642570.

    • Search Google Scholar
    • Export Citation
  • 37.

    Duraisingh MT, Curtis J, Warhurst DC, 1998. Plasmodium falciparum: detection of polymorphisms in the dihydrofolate reductase and dihydropteroate synthetase gene by PCR and resitriction digestion. Exp Parasitol 89: 18.

    • Search Google Scholar
    • Export Citation
 
 
 
 

 

 
 

 

 

 

 

 

 

Comparative Prevalence of Plasmodium falciparum Resistance-Associated Genetic Polymorphisms in Parasites Infecting Humans and Mosquitoes in Uganda

View More View Less
  • 1 Department of Medicine, University of California, San Francisco, California;
  • | 2 Infectious Disease Research Collaboration, Kampala, Uganda;
  • | 3 Makerere University College of Health Sciences, Kampala, Uganda

Controlling malaria in high transmission areas, such as much of sub-Saharan Africa, will require concerted efforts to slow the spread of drug resistance and to impede malaria transmission. Understanding the fitness costs associated with the development of drug resistance, particularly within the context of transmission, can help guide policy decisions to accomplish these goals, as fitness constraints might lead to decreased transmission of drug-resistant strains. To determine if Plasmodium falciparum resistance–mediating polymorphisms impact on development at different parasite stages, we compared the genotypes of parasites infecting humans and mosquitoes from households in Uganda. Genotypes at 14 polymorphic loci in genes encoding putative transporters (pfcrt and pfmdr1) and folate pathway enzymes (pfdhfr and pfdhps) were characterized using ligase detection reaction-fluorescent microsphere assays. In paired analysis using the Wilcoxon signed-rank test, prevalences of mutations at 12 loci did not differ significantly between parasites infecting humans and mosquitoes. However, compared with parasites infecting humans, those infecting mosquitoes were enriched for the pfmdr1 86Y mutant allele (P = 0.0001) and those infecting Anopheles gambiae s.s. were enriched for the pfmdr1 86Y (P = 0.0001) and pfcrt 76T (P = 0.0412) mutant alleles. Our results suggest modest directional selection resulting from varied fitness costs during the P. falciparum life cycle. Better appreciation of the fitness implications of drug resistance mediating mutations can inform optimal malaria treatment and prevention strategies.

    • Supplemental Materials (PDF 20 KB)

Author Notes

Address correspondence to Philip J. Rosenthal, Department of Medicine, University of California, Box 0811, San Francisco, CA 94946. E-mail: philip.rosenthal@ucsf.edu

Authors’ addresses: Melissa D. Conrad, Daniel Mota, Grant Dorsey, and Philip J. Rosenthal, Department of Medicine, University of California, San Francisco, CA, E-mails: conradm@medsfgh.ucsf.edu, dmotaxc@gmail.com, grant.dorsey@ucsf.edu, and philip.rosenthal@ucsf.edu. Alex Musiime and Maxwell Kilama, Infectious Diseases Research Collaboration, Entomology, Kampala, Uganda, E-mails: alexmedicare@yahoo.com and kilamam@gmail.com. John Rek and Moses Kamya, Infectious Diseases Research Collaboration, Epidemiology, Kampala, Uganda, E-mails: jrek@idrc-uganda.org and mkamya@idrc-uganda.org.

Save