• 1.

    Sack DA, Sack RB, Nair GB, Siddique AK, 2004. Cholera. Lancet 363: 223233.

  • 2.

    Raychoudhuri A, Mukhopadhyay A, Ramamurthy T, Nandy R, Takeda Y, Nair GB, 2008. Biotyping of Vibrio cholerae O1: time to redefine the scheme. Indian J Med Res 128: 695.

    • Search Google Scholar
    • Export Citation
  • 3.

    Ali M, Nelson AR, Lopez AL, Sack DA, 2015. Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis 9: e0003832.

  • 4.

    Emch M, Feldacker C, Islam MS, Ali M, 2008. Seasonality of cholera from 1974 to 2005: a review of global patterns. Int J Health Geogr 7: 31.

  • 5.

    Goel A, Jiang S, 2011. Association of heavy rainfall on genotypic diversity in V. cholerae isolates from an outbreak in India. Int J Microbiol 2011: 230597.

    • Search Google Scholar
    • Export Citation
  • 6.

    Sebastian T, Anandan S, Jeyaseelan V, Jeyaseelan L, Ramanathan K, Veeraraghavan B, 2015. Role of seasonality and rainfall in Vibrio cholerae infections: a time series model for 11 years surveillance data. Clinical Epidemiology and Global Health 3: 144148.

    • Search Google Scholar
    • Export Citation
  • 7.

    Reyburn R, Kim DR, Emch M, Khatib A, Von Seidlein L, Ali M, 2011. Climate variability and the outbreaks of cholera in Zanzibar, east Africa: a time series analysis. Am J Trop Med Hyg 84: 862869.

    • Search Google Scholar
    • Export Citation
  • 8.

    Luque Fernández , Bauernfeind A, Jiménez JD, Gil CL, Omeiri NE, Guibert DH, 2009. Influence of temperature and rainfall on the evolution of cholera epidemics in Lusaka, Zambia, 2003–2006: analysis of a time series. Trans R Soc Trop Med Hyg 103: 137143.

    • Search Google Scholar
    • Export Citation
  • 9.

    Safa A, Nair GB, Kong RY, 2010. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol 18: 4654.

  • 10.

    Rahaman MH, Islam T, Colwell RR, Alam M, 2015. Molecular tools in understanding the evolution of Vibrio cholerae. Front Microbiol 6: 1040.

  • 11.

    Singh D, Isac SR, Colwell R, 2002. Development of a hexaplex PCR assay for rapid detection of virulence and regulatory genes in Vibrio cholerae and Vibrio mimicus. J Clin Microbiol 40: 43214324.

    • Search Google Scholar
    • Export Citation
  • 12.

    Morita M, Ohnishi M, Arakawa E, Bhuiyan N, Nusrin S, Alam M, Siddique A, Qadri F, Izumiya H, Nair GB, 2008. Development and validation of a mismatch amplification mutation PCR assay to monitor the dissemination of an emerging variant of Vibrio cholerae O1 biotype El Tor. Microbiol Immunol 52: 314317.

    • Search Google Scholar
    • Export Citation
  • 13.

    Bhattacharya T, Chatterjee S, Maiti D, Bhadra RK, Takeda Y, Nair GB, Nandy RK, 2006. Molecular analysis of the rstR and orfU genes of the CTX prophages integrated in the small chromosomes of environmental Vibrio cholerae non‐O1, non‐O139 strains. Environ Microbiol 8: 526634.

    • Search Google Scholar
    • Export Citation
  • 14.

    Ghosh P, Naha A, Basak S, Ghosh S, Ramamurthy T, Koley H, Nandy RK, Shinoda S, Watanabe H, Mukhopadhyay AK, 2014. Haitian variant tcpA in Vibrio cholerae O1 El Tor strains in Kolkata, India. J Clin Microbiol 52: 10201021.

    • Search Google Scholar
    • Export Citation
  • 15.

    Okada K, Roobthaisong A, Nakagawa I, Hamada S, Chantaroj S, 2012. Genotypic and PFGE/MLVA analyses of Vibrio cholerae O1: geographical spread and temporal changes during the 2007–2010 cholera outbreaks in Thailand. PLoS One 7: e30863.

    • Search Google Scholar
    • Export Citation
  • 16.

    Stine OC, Alam M, Tang L, Nair GB, Siddique AK, Faruque SM, Huq A, Colwell R, Sack RB, Morris JG Jr, 2008. Seasonal cholera from multiple small outbreaks, rural Bangladesh. Emerg Infect Dis 14: 831.

    • Search Google Scholar
    • Export Citation
  • 17.

    Aung WW, Okada K, Na-Ubol M, Natakuathung W, Sandar T, Oo NAT, Aye MM, Hamada S, 2015. Cholera in Yangon, Myanmar, 2012–2013. Emerg Infect Dis 21: 543.

  • 18.

    Akanda AS, Jutla AS, Islam S, 2009. Dual peak cholera transmission in Bengal Delta: a hydroclimatological explanation. Geophys Res Lett 36: L19401.

    • Search Google Scholar
    • Export Citation
  • 19.

    Sack RB et al. 2003. A 4-year study of the epidemiology of Vibrio cholerae in four rural areas of Bangladesh. J Infect Dis 187: 96101.

  • 20.

    Akanda AS, Jutla AS, Alam M, de Magny GC, Siddique A, Sack RB, Huq A, Colwell RR, Islam S, 2011. Hydroclimatic influences on seasonal and spatial cholera transmission cycles: implications for public health intervention in the Bengal Delta. Water Resour Res 47: W00H07.

    • Search Google Scholar
    • Export Citation
  • 21.

    Akanda AS, Jutla AS, Gute DM, Sack RB, Alam M, Huq A, Colwell RR, Islam S, 2013. Population vulnerability to biannual cholera outbreaks and associated macro-scale drivers in the Bengal Delta. Am J Trop Med Hyg 89: 950959.

    • Search Google Scholar
    • Export Citation
  • 22.

    Bertuzzo E, Mari L, Righetto L, Gatto M, Casagrandi R, Rodriguez‐Iturbe I, Rinaldo A, 2012. Hydroclimatology of dual‐peak annual cholera incidence: insights from a spatially explicit model. Geophys Res Lett 39: L05403.

    • Search Google Scholar
    • Export Citation
  • 23.

    Bwire G, Munier A, Ouedraogo I, Heyerdahl L, Komakech H, Kagirita A, Wood R, Mhlanga R, Njanpop-Lafourcade B, Malimbo M, 2017. Epidemiology of cholera outbreaks and socio-economic characteristics of the communities in the fishing villages of Uganda: 2011–2015. PLoS Negl Trop Dis 11: e0005407.

    • Search Google Scholar
    • Export Citation
  • 24.

    Mutreja A et al. 2011. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477: 462465.

  • 25.

    Talkington D, Bopp C, Tarr C, Parsons MB, Dahourou G, Freeman M, Joyce K, Turnsek M, Garrett N, Humphrys M, 2011. Characterization of toxigenic Vibrio cholerae from Haiti, 2010–2011. Emerg Infect Dis 17: 2122.

    • Search Google Scholar
    • Export Citation
  • 26.

    Grim CJ, Hasan NA, Taviani E, Haley B, Chun J, Brettin TS, Bruce DC, Detter JC, Han CS, Chertkov O, 2010. Genome sequence of hybrid Vibrio cholerae O1 MJ-1236, B-33, and CIRS101 and comparative genomics with V. cholerae. J Bacteriol 192: 35243533.

    • Search Google Scholar
    • Export Citation
  • 27.

    Kim EJ, Lee CH, Nair GB, Kim DW, 2015. Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1. Trends Microbiol 23: 479489.

    • Search Google Scholar
    • Export Citation
  • 28.

    Reimer AR, Van Domselaar G, Stroika S, Walker M, Kent H, Tarr C, Talkington D, Rowe L, Olsen-Rasmussen M, Frace M, 2011. Comparative genomics of Vibrio cholerae from Haiti, Asia, and Africa. Emerg Infect Dis 17: 2113.

    • Search Google Scholar
    • Export Citation
  • 29.

    Okada K, Chantaroj S, Roobthaisong A, Hamada S, Sawanpanyalert P, 2010. A cholera outbreak of the Vibrio cholerae O1 El Tor variant carrying classical CtxB in northeastern Thailand in 2007. Am J Trop Med Hyg 82: 875878.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 280 158 15
PDF Downloads 83 42 6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Molecular Epidemiology of Cholera Outbreaks during the Rainy Season in Mandalay, Myanmar

View More View Less
  • 1 Section of Bacterial Infections, Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand;
  • | 2 Research Institute for Microbial Diseases, Osaka University, Osaka, Japan;
  • | 3 University of Medicine, Mandalay, Myanmar;
  • | 4 Advanced Molecular Research Centre, Department of Medical Research, Yangon, Myanmar;
  • | 5 Public Health Laboratory, Mandalay, Myanmar
Restricted access

Cholera, caused by Vibrio cholerae, remains a global threat to public health. In Myanmar, the availability of published information on the occurrence of the disease is scarce. We report here that cholera incidence in Mandalay generally exhibited a single annual peak, with an annual average of 312 patients with severe dehydration over the past 5 years (since 2011) and was closely associated with the rainy season. We analyzed cholera outbreaks, characterized 67 isolates of V. cholerae serogroup O1 in 2015 from patients from Mandalay, and compared them with 22 V. cholerae O1 isolates (12 from Mandalay and 10 from Yangon) in 2014. The isolates carried the classical cholera toxin B subunit (ctxB), the toxin-coregulated pilus A (tcpA) of Haitian type, and repeat sequence transcriptional regulator (rstR) of El Tor type. Two molecular typing methods, pulsed-field gel electrophoresis and multiple-locus variable-number tandem repeat analysis (MLVA), differentiated the 89 isolates into seven pulsotypes and 15 MLVA profiles. Pulsotype Y15 and one MLVA profile (11, 7, 7, 16, 7) were predominantly found in the isolates from cholera outbreaks in Mandalay, 2015. Pulsotypes Y11, Y12, and Y15 with some MLVA profiles were detected in the isolates from two remote areas, Mandalay and Yangon, with temporal changes. These data suggested that cholera spread from the seaside to the inland area in Myanmar.

    • Supplemental Materials (PDF 6502 KB)

Author Notes

Address correspondence to Kazuhisa Okada, Thailand-Japan RCC-ERI, Ministry of Public Health, Muang, Nonthaburi 11000, Thailand. E-mail: kazuhisa@biken.osaka-u.ac.jp

Financial support: This research was supported by the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) from Ministry of Education, Culture, Sport, Science and Technology in Japan, and Japan Agency for Medical Research and Development (AMED), and Department of Medical Research, Ministry of Health and Sports, Myanmar.

Authors’ addresses: Amonrattana Roobthaisong, Warawan Wongboot, and Watcharaporn Kamjumphol, Section of Bacterial Infections, Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand, E-mails: amonroob@gmail.com, pupha_tonnum@hotmail.com, and watchark48@gmail.com. Kazuhisa Okada, Section of Bacterial Infections, Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand, and Research Institute for Microbial Diseases, Osaka University, Osaka, Japan, E-mail: kazuhisa@biken.osaka-u.ac.jp. Nilar Htun and Aye Aye Han, University of Medicine, Mandalay, Myanmar, E-mails: graceliunilarhtun1@gmail.com and ayeayehan67@gmail.com. Wah Wah Aung, Advanced Molecular Research Centre, Department of Medical Research, Yangon, Myanmar, E-mail: drwahwahaung@gmail.com. Yi Yi, Public Health Laboratory, Mandalay, Myanmar, E-mail: phl.dryiyi@gmail.com. Shigeyuki Hamada, Research Institute for Microbial Diseases, Osaka, E-mail: hamadas@biken.osaka-u.ac.jp.

Save