Continuous Excretion of Leptospira borgpetersenii Ballum in Mice Assessed by Viability Quantitative Polymerase Chain Reaction

Marie-Estelle Soupé-Gilbert Institut Pasteur International Network, Institut Pasteur in New Caledonia, Leptospirosis Research and Expertise Unit, Nouméa Cedex, New Caledonia;

Search for other papers by Marie-Estelle Soupé-Gilbert in
Current site
Google Scholar
PubMed
Close
,
Emilie Bierque Institut Pasteur International Network, Institut Pasteur in New Caledonia, Leptospirosis Research and Expertise Unit, Nouméa Cedex, New Caledonia;

Search for other papers by Emilie Bierque in
Current site
Google Scholar
PubMed
Close
,
Sophie Geroult Institut Pasteur International Network, Institut Pasteur in New Caledonia, Leptospirosis Research and Expertise Unit, Nouméa Cedex, New Caledonia;

Search for other papers by Sophie Geroult in
Current site
Google Scholar
PubMed
Close
,
Magali Teurlai Institut Pasteur International Network, Institut Pasteur in New Caledonia, Epidemiology and Infectious Research and Expertise Unit, Nouméa Cedex, New Caledonia

Search for other papers by Magali Teurlai in
Current site
Google Scholar
PubMed
Close
, and
Cyrille Goarant Institut Pasteur International Network, Institut Pasteur in New Caledonia, Leptospirosis Research and Expertise Unit, Nouméa Cedex, New Caledonia;

Search for other papers by Cyrille Goarant in
Current site
Google Scholar
PubMed
Close
Restricted access

Rodents are the main reservoir animals of leptospirosis. In this study, we characterized and quantified the urinary excretion dynamics of Leptospira by Mus musculus infected with 2 × 108 virulent Leptospira borgpetersenii serogroup Ballum. Each micturition was collected separately in metabolic cages, at 12 time points from 7 to 117 days post-infection (dpi). We detected Leptospira in all urine samples collected (up to 8 per time point per mouse) proving that Leptospira excretion is continuous with ca. 90% live L. borgpetersenii Ballum, revealed by viability quantitative polymerase chain reaction. Microscopic visualization by Live/Dead fluorescence confirmed this high proportion of live bacteria and demonstrated that L. borgpetersenii Ballum are excreted, at least partly, as bacterial aggregates. We observed two distinct phases in the excretion dynamics, first an increase in Leptospira concentration shed in the urine between 7 and 63 dpi followed by a plateau phase from 63 dpi onward, with up to 3 × 107 Leptospira per mL of urine. These two phases seem to correspond to progressive colonization of renal tubules first, then to stable cell survival and maintenance in kidneys. Therefore, chronically infected adult mice are able to contaminate the environment via urine at each micturition event throughout their lifetime. Because Leptospira excretion reached its maximum 2 months after infection, older rodents have a greater risk of contaminating their surrounding environment.

Author Notes

Address correspondence to Cyrille Goarant, Institut Pasteur International Network, Institut Pasteur in New Caledonia, Leptospirosis Research and Expertise Unit, 11 Avenue Paul Doumer, BP 61, 98845 Nouméa Cedex, New Caledonia. E-mail: cgoarant@pasteur.nc

Financial support: This study was funded by the Institut Pasteur in New Caledonia.

Authors’ addresses: Marie-Estelle Soupé-Gilbert, Emilie Bierque, Sophie Geroult, and Cyrille Goarant, Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Nouméa Cedex, New Caledonia, E-mails: msoupe@pasteur.nc, ebierque@pasteur.nc, sophiegeroult@gmail.com, and cgoarant@pasteur.nc. Magali Teurlai, Epidemiology and Infectious Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Nouméa Cedex, New Caledonia, E-mail: teurlaimag@yahoo.fr.

  • 1.

    Bharti AR et al., 2003. Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 3: 757771.

  • 2.

    Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS, Stein C, Abela-Ridder B, Ko AI, 2015. Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis 9: e0003898.

    • Search Google Scholar
    • Export Citation
  • 3.

    Ko AI, Goarant C, Picardeau M, 2009. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 7: 736747.

    • Search Google Scholar
    • Export Citation
  • 4.

    Ido Y, Hoki R, Ito H, Wani H, 1917. The rat as a carrier of Spirochaeta Icterohaemorrhaguae, the causative agent of Weil’s disease (Spirochaetosis Icterohaemorrhagica). J Exp Med 26: 341353.

    • Search Google Scholar
    • Export Citation
  • 5.

    Babudieri B, 1958. Animal reservoirs of leptospires. Ann N Y Acad Sci 70: 393413.

  • 6.

    Perez J, Goarant C, 2010. Rapid Leptospira identification by direct sequencing of the diagnostic PCR products in New Caledonia. BMC Microbiol 10: 325.

    • Search Google Scholar
    • Export Citation
  • 7.

    Barragan V, Nieto N, Keim P, Pearson T, 2017. Meta-analysis to estimate the load of Leptospira excreted in urine: beyond rats as important sources of transmission in low-income rural communities. BMC Res Notes 10: 71.

    • Search Google Scholar
    • Export Citation
  • 8.

    Monahan AM, Callanan JJ, Nally JE, 2008. Proteomic analysis of Leptospira being shed in urine of chronically infected hosts. Infect Immun 76: 49524958.

    • Search Google Scholar
    • Export Citation
  • 9.

    Nally JE, Chow E, Fishbein MC, Blanco DR, Lovett MA, 2005. Changes in Lipopolysaccharide O antigen distinguish acute versus chronic Leptospira interrogans infections. Infect Immun 73: 32513260.

    • Search Google Scholar
    • Export Citation
  • 10.

    Rojas P, Monahan AM, Schuller S, Miller IS, Markey BK, Nally JE, 2010. Detection and quantification of leptospires in urine of dogs: a maintenance host for the zoonotic disease leptospirosis. Eur J Clin Microbiol Infect Dis 29: 13051309.

    • Search Google Scholar
    • Export Citation
  • 11.

    Costa F, Wunder EA Jr, De Oliveira D, Bisht V, Rodrigues G, Reis MG, Ko AI, Begon M, Childs JE, 2015. Patterns in Leptospira shedding in Norway rats (Rattus norvegicus) from Brazilian slum communities at high risk of disease transmission. PLoS Negl Trop Dis 9: e0003819.

    • Search Google Scholar
    • Export Citation
  • 12.

    Thiermann AB, 1981. The Norway rat as a selective chronic carrier of Leptospira icterohaemorrhagiae. J Wildl Dis 17: 3943.

  • 13.

    Perez J, Brescia F, Becam J, Mauron C, Goarant C, 2011. Rodent abundance dynamics and leptospirosis carriage in an area of hyper-endemicity in New Caledonia. PLoS Negl Trop Dis 5: e1361.

    • Search Google Scholar
    • Export Citation
  • 14.

    Richer L, Potula HH, Melo R, Vieira A, Gomes-Solecki M, 2015. A mouse model for sublethal leptospira infection. Infect Immun 83: 46934700.

  • 15.

    Lau CL, Skelly C, Dohnt M, Smythe LD, 2015. The emergence of Leptospira borgpetersenii serovar Arborea in Queensland, Australia, 2001 to 2013. BMC Infect Dis 15: 230.

    • Search Google Scholar
    • Export Citation
  • 16.

    Herrmann-Storck C, Postic D, Lamaury I, Perez JM, 2008. Changes in epidemiology of leptospirosis in 2003–2004, a two El Nino Southern Oscillation period, Guadeloupe archipelago, French West Indies. Epidemiol Infect 136: 14071415.

    • Search Google Scholar
    • Export Citation
  • 17.

    Faine S, Adler B, Bolin C, Perolat P, 1999. Leptospira and Leptospirosis, 2nd edition. Melbourne, Australia: MedSci.

  • 18.

    Bonilla-Santiago R, Nally JE, 2011. Rat model of chronic leptospirosis. Curr Protoc Microbiol 20: 12E.3.1–12E.3.8.

  • 19.

    Stoddard RA, Gee JE, Wilkins PP, McCaustland K, Hoffmaster AR, 2009. Detection of pathogenic Leptospira spp. through TaqMan polymerase chain reaction targeting the LipL32 gene. Diagn Microbiol Infect Dis 64: 247255.

    • Search Google Scholar
    • Export Citation
  • 20.

    Costa P, Ferreira AS, Amaro A, Albuquerque T, Botelho A, Couto I, Cunha MV, Viveiros M, Inacio J, 2013. Enhanced detection of tuberculous mycobacteria in animal tissues using a semi-nested probe-based real-time PCR. PLoS One 8: e81337.

    • Search Google Scholar
    • Export Citation
  • 21.

    Ferreira AS, Costa P, Rocha T, Amaro A, Vieira ML, Ahmed A, Thompson G, Hartskeerl RA, Inacio J, 2014. Direct detection and differentiation of pathogenic leptospira species using a multi-gene targeted real time PCR approach. PLoS One 9: e112312.

    • Search Google Scholar
    • Export Citation
  • 22.

    Bae S, Wuertz S, 2009. Discrimination of viable and dead fecal Bacteroidales bacteria by quantitative PCR with propidium monoazide. Appl Environ Microbiol 75: 29402944.

    • Search Google Scholar
    • Export Citation
  • 23.

    Peterson BW, Sharma PK, van der Mei HC, Busscher HJ, 2012. Bacterial cell surface damage due to centrifugal compaction. Appl Environ Microbiol 78: 120125.

    • Search Google Scholar
    • Export Citation
  • 24.

    Vu NT, Chaturvedi AK, Canfield DV, 1999. Genotyping for DQA1 and PM loci in urine using PCR-based amplification: effects of sample volume, storage temperature, preservatives, and aging on DNA extraction and typing. Forensic Sci Int 102: 2334.

    • Search Google Scholar
    • Export Citation
  • 25.

    Cannas A et al.; Consortium TBt, 2009. Implications of storing urinary DNA from different populations for molecular analyses. PLoS One 4: e6985.

    • Search Google Scholar
    • Export Citation
  • 26.

    Ingersoll J, Bythwood T, Abdul-Ali D, Wingood GM, Diclemente RJ, Caliendo AM, 2008. Stability of Trichomonas vaginalis DNA in urine specimens. J Clin Microbiol 46: 16281630.

    • Search Google Scholar
    • Export Citation
  • 27.

    Feng J, Wang T, Zhang S, Shi W, Zhang Y, 2014. An optimized SYBR Green I/PI assay for rapid viability assessment and antibiotic susceptibility testing for Borrelia burgdorferi. PLoS One 9: e111809.

    • Search Google Scholar
    • Export Citation
  • 28.

    R Core Team, 2014. R: A Language and Environment for Statistical Computing. Vienna, Australia: R foundation for Statistical Computing.

  • 29.

    Pinheiro JC, Bates DM, 2000. Mixed-Effects Models in S and S-PLUS. New York, NY: Springer-Verlag.

  • 30.

    Akaike H, 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control 19: 716723.

  • 31.

    Gomes-Solecki M, Santecchia I, Werts C, 2017. Animal models of leptospirosis: of mice and hamsters. Front Immunol 8: 58.

  • 32.

    Ratet G, Veyrier FJ, Fanton d’Andon M, Kammerscheit X, Nicola M-A, Picardeau M, Boneca IG, Werts C, 2014. Live imaging of bioluminescent Leptospira interrogans in mice reveals renal colonization as a stealth escape from the blood defenses and antibiotics. PLoS Negl Trop Dis 8: e3359.

    • Search Google Scholar
    • Export Citation
  • 33.

    Thibeaux R, Geroult S, Benezech C, Chabaud S, Soupé-Gilbert ME, Girault D, Bierque E, Goarant C, 2017. Seeking the environmental source of Leptospirosis reveals durable bacterial viability in river soils. PLoS Negl Trop Dis 11: e0005414.

    • Search Google Scholar
    • Export Citation
  • 34.

    Athanazio DA, Silva EF, Santos CS, Rocha GM, Vannier-Santos MA, McBride AJ, Ko AI, Reis MG, 2008. Rattus norvegicus as a model for persistent renal colonization by pathogenic Leptospira interrogans. Acta Trop 105: 176180.

    • Search Google Scholar
    • Export Citation
  • 35.

    Trueba G, Zapata S, Madrid K, Cullen P, Haake D, 2004. Cell aggregation: a mechanism of pathogenic Leptospira to survive in fresh water. Int Microbiol 7: 3540.

    • Search Google Scholar
    • Export Citation
  • 36.

    Brihuega B, Samartino L, Auteri C, Venzano A, Caimi K, 2012. In vivo cell aggregations of a recent swine biofilm-forming isolate of Leptospira interrogans strain from Argentina. Rev Argent Microbiol 44: 138143.

    • Search Google Scholar
    • Export Citation
  • 37.

    Ristow P, Bourhy P, Kerneis S, Schmitt C, Prevost MC, Lilenbaum W, Picardeau M, 2008. Biofilm formation by saprophytic and pathogenic leptospires. Microbiology 154: 13091317.

    • Search Google Scholar
    • Export Citation
  • 38.

    Parsek MR, Singh PK, 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57: 677701.

  • 39.

    Drickamer LC, 1995. Rates of urine excretion by house mouse (Mus domesticus): differences by age, sex, social status, and reproductive condition. J Chem Ecol 21: 14811493.

    • Search Google Scholar
    • Export Citation
  • 40.

    Thornley CN, Baker MG, Weinstein P, Maas EW, 2002. Changing epidemiology of human leptospirosis in New Zealand. Epidemiol Infect 128: 2936.

  • 41.

    Wynwood SJ, Craig SB, Graham GC, Blair BR, Burns MA, Weier SL, Collet TA, McKay DB, 2014. The emergence of Leptospira borgpetersenii serovar Arborea as the dominant infecting serovar following the summer of natural disasters in Queensland, Australia 2011. Trop Biomed 31: 281285.

    • Search Google Scholar
    • Export Citation
  • 42.

    Bulach DM et al., 2006. Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc Natl Acad Sci USA 103: 1456014565.

    • Search Google Scholar
    • Export Citation
  • 43.

    Kenward MG, Roger JH, 1997. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53: 983997.

Past two years Past Year Past 30 Days
Abstract Views 32 32 13
Full Text Views 426 117 1
PDF Downloads 115 26 1
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save