Dick GWA, Kitchen SF, Haddow AJ, 1952. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46: 509–520.
Fauci AS, Morens DM, 2016. Zika virus in the Americas: yet another arbovirus threat. N Engl J Med 374: 601–604.
Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Shi P-Y, Vasilakis N, 2016. Zika virus: history, emergence, biology, and prospects for control. Antiviral Res 130: 69–80.
Grard G, Caron M, Mombo IM, Nkoghe D, Mboui Ondo S, Jiolle D, Fontenille D, Paupy C, Leroy EM, 2014. Zika virus in Gabon (Central Africa)–2007: a new threat from Aedes albopictus?PLoS Negl Trop Dis 8: e2681.
Duffy MR, Chen T-H, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB, 2009. Zika virus outbreak on yap island, federated states of Micronesia. N Engl J Med 360: 2536–2543.
Musso D, Cao-Lormeau VM, Gubler DJ, 2015. Zika virus: following the path of dengue and chikungunya? Lancet 386: 243–244.
Cao-Lormeau V-M, Roche C, Teissier A, Robin E, Berry A-L, Mallet H-P, Sall AA, Musso D, 2013. Zika virus, French Polynesia, South Pacific, 2013. Emerg Infect Dis 20: 1084–1086.
Jouannic J-M, Friszer S, Leparc-Goffart I, Garel C, Eyrolle-Guignot D, 2016. Zika virus infection in French Polynesia. Lancet 387: 1051–1052.
Campos GS, Bandeira AC, Sardi SI, 2015. Zika virus outbreak, Bahia, Brazil. Emerg Infect Dis 21: 1885–1886.
Zanluca C, de Melo VCA, Mosimann ALP, dos Santos GIV, dos Santos CND, Luz K, 2015. First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz 110: 569–572.
Centers for Disease Control and Prevention, 2016. Countries & Territories with Active Local Zika Virus Transmission. Available at: http://www.cdc.gov/zika/geo/active-countries.html. Accessed November 14, 2016.
Texas Department of State Health Services, 2016. Texas Announces Local Zika Virus Case in Rio Grande Valley. Available at: http://dshs.texas.gov/news/releases/2016/20161128.aspx. Accessed December 2, 2016.
Basarab M, Bowman C, Aarons EJ, Cropley I, 2016. Zika virus. BMJ 352: i1049.
Mlakar J, Korva M, Tul N, Popović M, Poljšak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodušek V, Vizjak A, Pižem J, Petrovec M, Avšič Županc T, 2016. Zika virus associated with microcephaly. N Engl J Med 374: 951–958.
Hayes EB, 2009. Zika virus outside Africa. Emerg Infect Dis 15: 1347–1350.
Brasil P, Pereira JP Jr, Raja Gabaglia C, Damasceno L, Wakimoto M, Ribeiro Nogueira RM, Carvalho de Sequeira P, Machado Siqueira A, Abreu de Carvalho LM, Cotrim da Cunha D, Calvet GA, Neves ES, Moreira ME, Rodrigues Baião AE, Nassar de Carvalho PR, Janzen C, Valderramos SG, Cherry JD, Bispo de Filippis AM, Nielsen-Saines K, 2016. Zika virus infection in pregnant women in Rio de Janeiro: preliminary report. N Engl J Med 375: 2321–2334.
Carteaux G, Maquart M, Bedet A, Contou D, Brugières P, Fourati S, Cleret de Langavant L, de Broucker T, Brun-Buisson C, Leparc-Goffart I, Mekontso Dessap A, 2016. Zika virus associated with meningoencephalitis. N Engl J Med 374: 1595–1596.
De Paula Freitas B, de Oliveira Dias JR, Prazeres J, Sacramento GA, Ko AI, Maia M, Belfort R, 2016. Ocular findings in infants with microcephaly associated with presumed Zika virus congenital infection in Salvador, Brazil. JAMA Ophthalmol 134: 529–535.
Mécharles S, Herrmann C, Poullain P, Tran T-H, Deschamps N, Mathon G, Landais A, Breurec S, Lannuzel A, 2016. Acute myelitis due to Zika virus infection. Lancet 387: 148.
Cao-Lormeau V-M, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial A-L, Decam C, Choumet V, Halstead SK, Willison HJ, Musset L, Manuguerra J-C, Despres P, Fournier E, Mallet H-P, Musso D, Fontanet A, Neil J, Ghawché F, 2016. Guillain-Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387: 1531–1539.
Paploski IAD, Prates APPB, Cardoso CW, Kikuti M, Silva MMO, Waller LA, Reis MG, Kitron U, Ribeiro GS, 2016. Time lags between exanthematous illness attributed to Zika virus, Guillain-Barré syndrome, and microcephaly, Salvador, Brazil. Emerg Infect Dis 22: 1438–1444.
World Health Organization, 2016. WHO Statement on the First Meeting of the International Health Regulations (2005) (IHR 2005) Emergency Committee on Zika Virus and Observed Increase in Neurological Disorders and Neonatal Malformations. Available at: http://www.who.int/mediacentre/news/statements/2016/1st-emergency-committee-zika/en/. Accessed December 2, 2016.
Berthet N, Nakouné E, Kamgang B, Selekon B, Descorps-Declère S, Gessain A, Manuguerra J-C, Kazanji M, 2014. Molecular characterization of three Zika flaviviruses obtained from sylvatic mosquitoes in the Central African Republic. Vector Borne Zoonotic Dis 14: 862–865.
Vasilakis N, Weaver SC, 2017. Flavivirus transmission focusing on Zika. Curr Opin Virol 22: 30–35.
Marchette NJ, Garcia R, Rudnick A, 1969. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg 18: 411–415.
Musso D, Gubler DJ, 2016. Zika virus. Clin Microbiol Rev 29: 487–524.
Guerbois M, Fernandez-Salas I, Azar SR, Danis-Lozano R, Alpuche-Aranda CM, Leal G, Garcia-Malo IR, Diaz-Gonzalez EE, Casas-Martinez M, Rossi SL, Del Río-Galván SL, Sanchez-Casas RM, Roundy CM, Wood TG, Widen SG, Vasilakis N, Weaver SC, 2016. Outbreak of Zika virus infection, Chiapas State, Mexico, 2015, and first confirmed transmission by Aedes aegypti mosquitoes in the Americas. J Infect Dis 214: 1349–1356.
Ferreira-de-Brito A, Ribeiro IP, de Miranda RM, Fernandes RS, Campos SS, da Silva KAB, de Castro MG, Bonaldo MC, Brasil P, Lourenço-de-Oliveira R, 2016. First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America. Mem Inst Oswaldo Cruz 111: 655–658.
Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D, 2009. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect 11: 1177–1185.
Tsetsarkin KA, Chen R, Yun R, Rossi SL, Plante KS, Guerbois M, Forrester N, Perng GC, Sreekumar E, Leal G, Huang J, Mukhopadhyay S, Weaver SC, 2014. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat Commun 5: 4084.
Bonizzoni M, Gasperi G, Chen X, James AA, 2013. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29: 460–468.
Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S, 2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3: e201.
Centers for Disease Control and Prevention, 2016. Estimated Range of Aedes albopictus and Aedes aegypti in the United States. Available at: http://www.cdc.gov/zika/vector/range.html. Accessed November 27, 2016.
Chouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R, Goindin D, Dupont-Rouzeyrol M, Lourenço-de-Oliveira R, Failloux A-B, 2016. Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Negl Trop Dis 10: e0004543.
Di Luca M, Severini F, Toma L, Boccolini D, Romi R, Remoli ME, Sabbatucci M, Rizzo C, Venturi G, Rezza G, Fortuna C, 2016. Experimental studies of susceptibility of Italian Aedes albopictus to Zika virus. Euro Surveill 21: 30223.
Wong P-SJ, Li MI, Chong C-S, Ng L-C, Tan C-H, 2013. Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLoS Negl Trop Dis 7: e2348.
Roundy CM, Azar SR, Rossi SL, Huang JH, Leal G, Yun R, Fernadez-Salas I, Vitek CJ, Paploski IAD, Kitron U, Ribeiro GS, Hanley KA, Weaver SC, Vasilakis N, 2017. Variation in Aedes aegypti competence for Zika virus transmission as a function of viral strain blood meal type and mosquito geographic origin. Emerg Infect Dis 23: 625–632.
Centers for Disease Control and Prevention (CDC), 2007. Dengue hemorrhagic fever: U.S.-Mexico border, 2005. MMWR Morb Mortal Wkly Rep 56: 785–789.
Rossi SL, Tesh RB, Azar SR, Muruato AE, Hanley KA, Auguste AJ, Langsjoen RM, Paessler S, Vasilakis N, Weaver SC, 2016. Characterization of a novel murine model to study Zika virus. Am J Trop Med Hyg 94: 1362–1369.
Williams M, Mayer SV, Johnson WL, Chen R, Volkova E, Vilcarromero S, Widen SG, Wood TG, Suarez-Ognio L, Long KC, Hanley KA, Morrison AC, Vasilakis N, Halsey ES, 2014. Lineage II of southeast Asian/American DENV-2 is associated with a severe dengue outbreak in the Peruvian Amazon. Am J Trop Med Hyg 91: 611–620.
Reed LJ, Muench H, 1938. A simple method of estimating fifty percent endpoints. Am J Hyg 27: 493–497.
Yang C-F, Hou J-N, Chen T-H, Chen W-J, 2014. Discriminable roles of Aedes aegypti and Aedes albopictus in establishment of dengue outbreaks in Taiwan. Acta Trop 130: 17–23.
Weaver SC, Lorenz LH, Scott TW, 1993. Distribution of western equine encephalomyelitis virus in the alimentary tract of Culex tarsalis (Diptera: Culicidae) following natural and artificial blood meals. J Med Entomol 30: 391–397.
Richards SL, Pesko K, Alto BW, Mores CN, 2007. Reduced infection in mosquitoes exposed to blood meals containing previously frozen flaviviruses. Virus Res 129: 224–227.
Weger-Lucarelli J, Rückert C, Chotiwan N, Nguyen C, Garcia Luna SM, Fauver JR, Foy BD, Perera R, Black WC, Kading RC, Ebel GD, 2016. Vector competence of American mosquitoes for three strains of Zika virus. PLoS Negl Trop Dis 10: e0005101.
Fourcade C, Mansuy J-M, Dutertre M, Delpech M, Marchou B, Delobel P, Izopet J, Martin-Blondel G, 2016. Viral load kinetics of Zika virus in plasma, urine and saliva in a couple returning from Martinique, French West Indies. J Clin Virol 82: 1–4.
Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR, 2008. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 14: 1232–1239.
Armstrong PM, Rico-Hesse R, 2001. Differential susceptibility of Aedes aegypti to infection by the American and southeast Asian genotypes of dengue type 2 virus. Vector Borne Zoonotic Dis 1: 159–168.
Lambrechts L, Scott TW, Gubler DJ, 2010. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 4: e646.
Forrester N, Coffey L, Weaver S, 2014. Arboviral bottlenecks and challenges to maintaining diversity and fitness during mosquito transmission. Viruses 6: 3991–4004.
Lounibos LP, Kramer LD, 2016. Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. J Infect Dis 214 (Suppl 5): S453–S458.
Franz A, Kantor A, Passarelli A, Clem R, 2015. Tissue barriers to arbovirus infection in mosquitoes. Viruses 7: 3741–3767.
Shan C, Xie X, Muruato AE, Rossi SL, Roundy CM, Azar SR, Yang Y, Tesh RB, Bourne N, Barrett AD, Vasilakis N, Weaver SC, Shi P-Y, 2016. An infectious cDNA clone of Zika virus to study viral virulence, mosquito transmission, and antiviral inhibitors. Cell Host Microbe 19: 891–900.
Gardner LM, Chen N, Sarkar S, 2016. Global risk of Zika virus depends critically on vector status of Aedes albopictus. Lancet Infect Dis 16: 522–523.
Althouse BM, Hanley KA, 2015. The tortoise or the hare? Impacts of within-host dynamics on transmission success of arthropod-borne viruses. Phil Trans R Soc B 370: 20140299.
Smith DR, Carrara A-S, Aguilar PV, Weaver SC, 2005. Evaluation of methods to assess transmission potential of Venezuelan equine encephalitis virus by mosquitoes and estimation of mosquito saliva titers. Am J Trop Med Hyg 73: 33–39.
Smith DR, Aguilar PV, Coffey LL, Gromowski GD, Wang E, Weaver SC, 2006. Venezuelan equine encephalitis virus transmission and effect on pathogenesis. Emerg Infect Dis 12: 1190–1196.
Styer LM, Kent KA, Albright RG, Bennett CJ, Kramer LD, Bernard KA, 2007. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog 3: e132.
Hanley KA, Goddard LB, Gilmore LE, Scott TW, Speicher J, Murphy BR, Pletnev AG, 2005. Infectivity of West Nile/dengue chimeric viruses for West Nile and dengue mosquito vectors. Vector Borne Zoonotic Dis 5: 1–10.
Klowden MJ, Lea AO, 1978. Blood meal size as a factor affecting continued host-seeking by Aedes aegypti (L.). Am J Trop Med Hyg 27: 827–831.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 8 | 8 | 8 |
Full Text Views | 875 | 276 | 10 |
PDF Downloads | 303 | 91 | 10 |
To evaluate the potential role of Aedes albopictus (Skuse) as a vector of Zika virus (ZIKV), colonized mosquitoes of low generation number (≤ F5) from Brazil, Houston, and the Rio Grande Valley of Texas engorged on viremic mice infected with ZIKV strains originating from Senegal, Cambodia, Mexico, Brazil, or Puerto Rico. Vector competence was established by monitoring infection, dissemination, and transmission potential after 3, 7, and 14 days of extrinsic incubation. Positive saliva samples were assayed for infectious titer. Although all three mosquito populations were susceptible to all ZIKV strains, rates of infection, dissemination, and transmission differed among mosquito and virus strains. Aedes albopictus from Salvador, Brazil, were the least efficient vectors, demonstrating susceptibility to infection to two American strains of ZIKV but failing to shed virus in saliva. Mosquitoes from the Rio Grande Valley were the most efficient vectors and were capable of shedding all three tested ZIKV strains into saliva after 14 days of extrinsic incubation. In particular, ZIKV strain DakAR 41525 (Senegal 1954) was significantly more efficient at dissemination and saliva deposition than the others tested in Rio Grande mosquitoes. Overall, our data indicate that, while Ae. albopictus is capable of transmitting ZIKV, its competence is potentially dependent on geographic origin of both the mosquito population and the viral strain.
Financial support: This work was supported by a pilot grant by the Institute for Human Infections and Immunity. NIH grants R24AI120942 and R01AI121452 (SCW), 1U01AI115577 (NV) and 1R15AI113628-01 (KAH), and grants from Brazilian National Council of Technological and Scientific Development (440891/2016-7 and 400830/2013-2) and the Coordination for the Improvement of Higher Education (440891/2016-7) (GSR). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors have no conflicting financial interests.
Authors' addresses: Sasha R. Azar, Christopher M. Roundy, and Scott C. Weaver, Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, E-mails: srazar@utmb.edu, cmroundy@utmb.edu, and sweaver@utmb.edu. Shannan L. Rossi, Jing H. Huang, Grace Leal, Ruimei Yun, and Scott C. Weaver, Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, E-mails: slrossi@utmb.edu, jhhuang@utmb.edu, grleal@utmb.edu, ruyun@utmb.edu, and nivasila@utmb.edu. Ildefonso Fernandez-Salas, Instituto Nacional de Salud Pública, Centro Regional de Salud Pública, Tapachula, Chiapas, México, E-mail: ildefonso.fernandez@insp.mxhiapas. Christopher J. Vitek, University of Texas Rio Grande Valley, Edinburg, TX, E-mail: christopher.vitek@utrgv.edu. Igor A. D. Paploski and Guilherme S. Ribeiro, Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Candeal, Salvador, Brazil, and Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Brazil, E-mails: igorufprmv@gmail.com and gsribeiro@gmail.com. Pamela M. Stark, Jeremy Vela, Mustapha Debboun, and Martin Reyna, Harris County Public Health Mosquito and Vector Control Division, Houston, TX, E-mails: pstark@hcphes.org, jvela@hcphes.org, mdebboun@hcphes.org, and mreyna@hcphes.org. Uriel Kitron, Population Biology, Ecology, and Evolution Graduate Program, Graduate Division of Biological and Biomedical Sciences, Department of Environmental Studies, Emory University, Atlanta, GA, E-mail: ukitron@emory.edu. Kathryn A. Hanley, Department of Biology, New Mexico State University, Las Cruces, New Mexico, E-mail: khanley@nmsu.edu.