• 1.

    World Health Organization, 2015. Global Tuberculosis Report 2015. Geneva, Switzerland: World Health Organization.

  • 2.

    World Health Organization, 2015. Tuberculosis Fact Sheet. Geneva, Switzerland: World Health Organization.

  • 3.

    Savage DC, 1977. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31: 107133.

  • 4.

    Lederberg J, McCray AT, 2001. ‘Ome sweet ’omics: a genealogical treasury of words. Scientist 15: 8.

  • 5.

    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S, 2012. Host-gut microbiota metabolic interactions. Science 336: 12621267.

  • 6.

    Round JL, Mazmanian SK, 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9: 313323.

  • 7.

    Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L, 2010. Disordered microbial communities in asthmatic airways. PLoS One 5: e8578.

    • Search Google Scholar
    • Export Citation
  • 8.

    Flynn JL, Chan J, 2001. Immunology of tuberculosis. Annu Rev Immunol 19: 93129.

  • 9.

    Mosmann TR, Sad S, 1996. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17: 138146.

  • 10.

    Bhattacharya D, Dwivedi VP, Maiga M, Van Kaer L, Bishai WR, Das G, 2014. Small molecule-directed immunotherapy against recurrent infection by Mycobacterium tuberculosis. J Biol Chem 289: 1650816515.

    • Search Google Scholar
    • Export Citation
  • 11.

    Abbas AK, Murphy KM, Sher A, 1996. Functional diversity of helper T lymphocytes. Nature 383: 787793.

  • 12.

    Minarrieta L, Ghorbani P, Sparwasser T, Berod L, 2016. Metabolites: deciphering the molecular language between DCs and their environment. Semin Immunopathol 39: 177198.

    • Search Google Scholar
    • Export Citation
  • 13.

    Levy M, Blacher E, Elinav E, 2016. Microbiome, metabolites and host immunity. Curr Opin Microbiol 35: 815.

  • 14.

    Ley RE, Turnbaugh PJ, Klein S, Gordon JI, 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444: 10221023.

  • 15.

    Harris JK, De Groote MA, Sagel SD, Zemanick ET, Kapsner R, Penvari C, Kaess H, Deterding RR, Accurso FJ, Pace NR, 2007. Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci USA 104: 2052920533.

    • Search Google Scholar
    • Export Citation
  • 16.

    Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, Young VB, Toews GB, Curtis JL, Sundaram B, 2011. Analysis of the lung microbiome in the “healthy” smoker and in COPD. PLoS One 6: e16384.

    • Search Google Scholar
    • Export Citation
  • 17.

    Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL, Flores SC, Fontenot AP, Ghedin E, Huang L, Jablonski K, Kleerup E, Lynch SV, Sodergren E, Twigg H, Young VB, Bassis CM, Venkataraman A, Schmidt TM, Weinstock GM, 2013. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med 187: 10671075.

    • Search Google Scholar
    • Export Citation
  • 18.

    Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL, 2003. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422: 522526.

    • Search Google Scholar
    • Export Citation
  • 19.

    Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT, 2010. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328: 228231.

    • Search Google Scholar
    • Export Citation
  • 20.

    Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA, 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145: 745757.

    • Search Google Scholar
    • Export Citation
  • 21.

    Krishna P, Jain A, Bisen PS, 2016. Microbiome diversity in the sputum of patients with pulmonary tuberculosis. Eur J Clin Microbiol Infect Dis 7: 12051210.

    • Search Google Scholar
    • Export Citation
  • 22.

    Iwai S, Huang D, Fong S, Jarlsberg LG, Worodria W, Yoo S, Cattamanchi A, Davis JL, Kaswabuli S, Segal M, Huang L, Lynch SV, 2014. The lung microbiome of Ugandan HIV-infected pneumonia patients is compositionally and functionally distinct from that of San Franciscan patients. PLoS One 9: e95726.

    • Search Google Scholar
    • Export Citation
  • 23.

    Round JL, Mazmanian SK, 2010. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 107: 1220412209.

    • Search Google Scholar
    • Export Citation
  • 24.

    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K, 2011. Induction of colonic regulatory T cells by indigenous clostridium species. Science 331: 337341.

    • Search Google Scholar
    • Export Citation
  • 25.

    Huda MN, Lewis Z, Kalanetra KM, Rashid M, Ahmad SM, Raqib R, Qadri F, Underwood MA, Mills DA, Stephensen CB, 2014. Stool microbiota and vaccine responses of infants. Pediatrics 134: e362e372.

    • Search Google Scholar
    • Export Citation
  • 26.

    Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, Kuzeljevic B, Gold MJ, Britton HM, Lefebvre DL, Subbarao P, Mandhane P, Becker A, McNagny KM, Sears MR, Kollmann T, the CHILD Study Investigators, Mohn WW, Turvey SE, Brett Finlay B, 2015. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7: 307ra152.

    • Search Google Scholar
    • Export Citation
  • 27.

    Segal LN, Alekseyenko AV, Clemente JC, Kulkarni R, Wu B, Chen H, Berger KI, Goldring RM, Rom WN, Blaser MJ, Weiden MD, 2013. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 1: 112.

    • Search Google Scholar
    • Export Citation
  • 28.

    Wu S, Jiang ZY, Sun YF, Yu B, Chen J, Dai CQ, Wu XL, Tang XL, Chen XY, 2013. Microbiota regulates the TLR7 signaling pathway against respiratory tract influenza A virus infection. Curr Microbiol 67: 414422.

    • Search Google Scholar
    • Export Citation
  • 29.

    Licciardi PV, Toh ZQ, Dunne E, Wong S-S, Mulholland EK, Tang M, Robins-Browne RM, Satzke C, 2012. Protecting against pneumococcal disease: critical interactions between probiotics and the airway microbiome. PLoS Pathog 8: e1002652.

    • Search Google Scholar
    • Export Citation
  • 30.

    Winglee K, Eloe-Fadrosh E, Gupta S, Guo H, Fraser C, Bishai W, 2014. Aerosol Mycobacterium tuberculosis infection causes rapid loss of diversity in gut microbiota. PLoS One 9: e97048.

    • Search Google Scholar
    • Export Citation
  • 31.

    Dubourg G, Lagier JC, Armougom F, Robert C, Hamad I, Brouqui P, Raoult D, 2013. The gut microbiota of a patient with resistant tuberculosis is more comprehensively studied by culturomics than by metagenomics. Eur J Clin Microbiol Infect Dis 32: 637645.

    • Search Google Scholar
    • Export Citation
  • 32.

    Cui Z, Zhou Y, Li H, Zhang Y, Zhang S, Tang S, Guo X, 2012. Complex sputum microbial composition in patients with pulmonary tuberculosis. BMC Microbiol 12: 276.

    • Search Google Scholar
    • Export Citation
  • 33.

    Cheung MK, Lam WY, Fung WY, Law PT, Au CH, Nong W, Kam KM, Kwan HS, Tsui SK, 2013. Sputum microbiota in tuberculosis as revealed by 16S rRNA pyrosequencing. PLoS One 8: e54574.

    • Search Google Scholar
    • Export Citation
  • 34.

    Wu J, Liu W, He L, Huang F, Chen J, Cui P, Shen Y, Zhao J, Wang W, Zhang Y, Zhu M, Zhang W, Zhang Y, 2013. Sputum microbiota associated with new, recurrent and treatment failure tuberculosis. PLoS One 8: e83445.

    • Search Google Scholar
    • Export Citation
  • 35.

    Botero LE, Delgado-Serrano L, Cepeda ML, Bustos JR, Anzola JM, Del Portillo P, Robledo J, Zambrano MM, 2014. Respiratory tract clinical sample selection for microbiota analysis in patients with pulmonary tuberculosis. Microbiome 2: 29.

    • Search Google Scholar
    • Export Citation
  • 36.

    Zhou Y, Lin F, Cui Z, Zhang X, Hu C, Shen T, Chen C, Zhang X, Guo X, 2015. Correlation between either Cupriavidus or Porphyromonas and primary pulmonary tuberculosis found by analysing the microbiota in patients' bronchoalveolar lavage fluid. PLoS One 10: e0124194.

    • Search Google Scholar
    • Export Citation
  • 37.

    Perry S, de Jong BC, Solnick JV, de la Luz Sanchez M, Yang S, Lin PL, Hansen LM, Talat N, Hill PC, Hussain R, Adegbola RA, Flynn J, Canfield D, Parsonnet J, 2010. Infection with Helicobacter pylori is associated with protection against tuberculosis. PLoS One 5: e8804.

    • Search Google Scholar
    • Export Citation
  • 38.

    Arnold IC, Hutchings C, Kondova I, Hey A, Powrie F, Beverley P, Tchilian E, 2015. Helicobacter hepaticus infection in BALB/c mice abolishes subunit-vaccine-induced protection against M. tuberculosis. Vaccine 33: 18081814.

    • Search Google Scholar
    • Export Citation
  • 39.

    Lachmandas E, van den Heuvel CN, Damen MS, Cleophas MC, Netea MG, van Crevel R, 2016. Diabetes mellitus and increased tuberculosis susceptibility: the role of short-chain fatty acids. J Diabetes Res 2016: 6014631.

    • Search Google Scholar
    • Export Citation
  • 40.

    Bird AR, Brown IL, Topping DL, 2000. Starches, resistant starches, the gut microflora and human health. Curr Issues Intest Microbiol 1: 2537.

    • Search Google Scholar
    • Export Citation
  • 41.

    Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS, 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341: 569573.

    • Search Google Scholar
    • Export Citation
  • 42.

    Shafiani S, Tucker-Heard G, Kariyone A, Takatsu K, Urdahl KB, 2010. Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 207: 14091420.

    • Search Google Scholar
    • Export Citation
  • 43.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R, 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335336.

    • Search Google Scholar
    • Export Citation
  • 44.

    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Challenger GG, Van Horn DJ, Weber CF, 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 75377541.

    • Search Google Scholar
    • Export Citation
  • 45.

    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Suske CR, Tiedje JM, 2014. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42: D633D642.

    • Search Google Scholar
    • Export Citation
  • 46.

    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL, 2006. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl Environ Microbiol 72: 50695072.

    • Search Google Scholar
    • Export Citation
  • 47.

    Jumpstart Consortium Human Microbiome Project Data Generation Working Group, 2012. Evaluation of 16S rDNA-based community profiling for human microbiome research. PLoS One 7: e39315.

    • Search Google Scholar
    • Export Citation
  • 48.

    The Human Microbiome Project Consortium, 2012. Structure, function and diversity of the healthy human microbiome. Nature 486: 207214.

 
 
 

 

 
 
 

 

 

 

 

 

 

The Human Microbiome in the Fight Against Tuberculosis

View More View Less
  • 1 Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York.
  • | 2 Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York.

The human microbiome is an intriguing potentially modifiable risk factor in our arsenal against Mycobacterium tuberculosis, the leading infectious disease killer globally. Previous studies have shown associations between the human microbiome and pulmonary disease states; however, etiological links between the microbiome and tuberculosis (TB) infection or disease remain unclear. Immunomodulatory roles of the microbiome may prove to be a critical asset in the host response against TB, including in preventing TB infection, reducing progression from latency, mitigating disease severity, and lowering the incidence of drug resistance and coinfections. This review examined the associations between TB and the gut and lung microbiome. Eight studies were identified through a PubMed database search, including one animal study (N = 1), case report (N = 1), and case–control studies (N = 6). TB infection and disease were associated with reduced gastrointestinal microbial diversity in a murine model and human case report. Sputum microbial diversity differed by TB status in case–control studies, although some reported heterogeneous findings. Current evidence suggests that the gut and lung microbiome are associated with TB infection and disease. However, as studies are limited, etiological and longitudinal research is needed to determine clinical relevance.

Author Notes

* Address correspondence to Saurabh Mehta, Cornell University, 314 Savage Hall, Ithaca, NY 14853. E-mail: smehta@cornell.edu† These authors contributed equally to this work.

Financial support: Research reported in this publication was supported by the Human Ecology Alumni Association of Cornell University (for Madeleine R. Wood) and the National Institutes of Health (National Institute of Diabetes and Digestive and Kidney Diseases; T32-DK007158 award; for Elaine A. Yu).

Disclosure: Madeleine R. Wood and Elaine A. Yu have no conflicts of interest. Saurabh Mehta is an unpaid board member of and has an equity interest in a diagnostic start-up focused on developing assays for low-cost and point-of-care measurement of certain nutrients from a drop of blood using results from his research as a faculty member at Cornell University.

Authors' addresses: Madeleine R. Wood and Elaine A. Yu, Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY, E-mails: mrw245@cornell.edu and eay27@cornell.edu. Saurabh Mehta, Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY, and Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, NY, E-mail: smehta@cornell.edu.

Save