• 1.

    Pérez de Rosas AR, Segura EL, García BA, 2007. Microsatellite analysis of genetic structure in natural Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina: its implication in assessing the effectiveness of Chagas' disease vector control programmes. Mol Ecol 16: 14011412.

    • Search Google Scholar
    • Export Citation
  • 2.

    Pérez de Rosas AR, Segura EL, Fichera L, García BA, 2008. Macrogeographic and microgeographic genetic structure of the Chagas' disease vector Triatoma infestans (Hemiptera: Reduviidae) from Catamarca, Argentina. Genetica 133: 247260.

    • Search Google Scholar
    • Export Citation
  • 3.

    Pérez de Rosas AR, Segura EL, García BA, 2011. Molecular phylogeography of the Chagas' disease vector Triatoma infestans in Argentina. Heredity 107: 7179.

    • Search Google Scholar
    • Export Citation
  • 4.

    Pérez de Rosas AR, Segura EL, Bareiro Guiñazú AL, Fusco O, García BA, 2013. Fine-scale genetic structure in populations of Triatoma infestans (Hemiptera, Reduviidae). Genetica 141: 107117.

    • Search Google Scholar
    • Export Citation
  • 5.

    Marcet PL, Mora MS, Cutrera AP, Jones L, Gürtler RE, Kitron U, Dotson EM, 2008. Genetic structure of Triatoma infestans populations in rural communities of Santiago del Estero, northern Argentina. Infect Genet Evol 8: 835846.

    • Search Google Scholar
    • Export Citation
  • 6.

    Pizarro JC, Gilligan LM, Stevens L, 2008. Microsatellites reveal a high population structure in Triatoma infestans from Chuquisaca, Bolivia. PLoS Negl Trop Dis 2: e202.

    • Search Google Scholar
    • Export Citation
  • 7.

    Piccinali RV, Gürtler RE, 2015. Fine-scale genetic structure of Triatoma infestans in the Argentine Chaco. Infect Genet Evol 34: 143152.

  • 8.

    Zietkiewicz E, Rafalski A, Labuda D, 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176183.

    • Search Google Scholar
    • Export Citation
  • 9.

    Peakall R, Smouse PE, Huff DR, 1995. Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalograss Buchloe dactyloides. Mol Ecol 4: 135147.

    • Search Google Scholar
    • Export Citation
  • 10.

    Meirmans PG, 2006. Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60: 23992402.

  • 11.

    Wright S, 1951. The genetical structure of populations. Ann Hum Genet 15: 323354.

  • 12.

    Peakall R, Smouse PE, 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28: 25372539.

    • Search Google Scholar
    • Export Citation
  • 13.

    Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959.

  • 14.

    Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 26112620.

    • Search Google Scholar
    • Export Citation
  • 15.

    Peakall R, Ruibal M, Lindenmayer DB, 2003. Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57: 11821195.

    • Search Google Scholar
    • Export Citation
  • 16.

    Soliani C, Rondan-Dueñas J, Chiappero MB, Martínez M, Da Rosa EG, Gardenal CN, 2010. Genetic relationships among populations of Aedes aegypti from Uruguay and northeastern Argentina inferred from ISSR-PCR data. Med Vet Entomol 24: 316323.

    • Search Google Scholar
    • Export Citation
  • 17.

    Mendki MJ, Sharma AK, Veer V, Agrawal OP, Prakash S, Parashar BD, 2011. Population genetic structure of Culex quinquefasciatus in India by ISSR marker. Asian Pac J Trop Med 4: 357362.

    • Search Google Scholar
    • Export Citation
  • 18.

    Schofield CJ, Lehane MJ, McEwen P, Catala SS, Gorla DE, 1992. Dispersive flight by Triatoma infestans under natural climatic conditions in Argentina. Med Vet Entomol 6: 5156.

    • Search Google Scholar
    • Export Citation
  • 19.

    Lehane MJ, McEwen PK, Whitaker CJ, Schofield CJ, 1992. The role of temperature and nutritional status in flight initiation by Triatoma infestans. Acta Trop 52: 2738.

    • Search Google Scholar
    • Export Citation
  • 20.

    Gürtler RE, Canale DM, Spillmann C, Stariolo R, Salomón OD, Blanco S, Segura EL, 2004. Effectiveness of residual spraying of peridomestic ecotopes with deltamethrin and permethrin on Triatoma infestans in rural western Argentina: a district-wide randomized trial. Bull World Health Organ 82: 196205.

    • Search Google Scholar
    • Export Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Application of Inter-Simple Sequence Repeat Markers in the Analysis of Populations of the Chagas Disease Vector Triatoma infestans (Hemiptera, Reduviidae)

View More View Less
  • 1 Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
Restricted access

Here we apply inter-simple sequence repeat (ISSR) markers to explore the fine-scale genetic structure and dispersal in populations of Triatoma infestans. Five selected primers from 30 primers were used to amplify ISSRs by polymerase chain reaction. A total of 90 polymorphic bands were detected across 134 individuals captured from 11 peridomestic sites from the locality of San Martín (Capayán Department, Catamarca Province, Argentina). Significant levels of genetic differentiation suggest limited gene flow among sampling sites. Spatial autocorrelation analysis confirms that dispersal occurs on the scale of ∼469 m, suggesting that insecticide spraying should be extended at least within a radius of ∼500 m around the infested area. Moreover, Bayesian clustering algorithms indicated genetic exchange among different sites analyzed, supporting the hypothesis of an important role of peridomestic structures in the process of reinfestation.

Author Notes

* Address correspondence to Beatriz Alicia García, Facultad de Ciencias Médicas, Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Pabellón Argentina 2do Piso, Ciudad Universitaria, 5000 Córdoba, Argentina. E-mail: bgarcia@biomed.uncor.edu

Financial support: This research was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (FONCyT-Argentina), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-Argentina), and Secretaría de Ciencia y Tecnología, Universidad Nacional de Córdoba (SECyT-UNC-Argentina).

Disclosure: Alicia R. Pérez de Rosas and Beatriz A. Garcia are Career Investigators of CONICET.

Authors' addresses: Alicia R. Pérez de Rosas, María F. Restelli, Cintia J. Fernández, María J. Blariza, and Beatriz A. García, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina, E-mails: arperez@biomed.fcm.unc.edu.ar, restelli.florencia@gmail.com, cjudithfernandez@gmail.com, mariablariza@yahoo.com.ar, and bgarcia@biomed.uncor.edu.

Save