Evaluation of Immunoglobulin G Responses to Plasmodium falciparum and Plasmodium vivax in Malian School Children Using Multiplex Bead Assay

Eric Rogier Division of Parasitic Diseases and Malaria, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia.

Search for other papers by Eric Rogier in
Current site
Google Scholar
PubMed
Close
,
Delynn M. Moss Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia.

Search for other papers by Delynn M. Moss in
Current site
Google Scholar
PubMed
Close
,
Anna N. Chard Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia.

Search for other papers by Anna N. Chard in
Current site
Google Scholar
PubMed
Close
,
Victoria Trinies Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia.

Search for other papers by Victoria Trinies in
Current site
Google Scholar
PubMed
Close
,
Seydou Doumbia Malaria Research and Training Center, Faculty of Medicine and Odontostomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.

Search for other papers by Seydou Doumbia in
Current site
Google Scholar
PubMed
Close
,
Matthew C. Freeman Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia.

Search for other papers by Matthew C. Freeman in
Current site
Google Scholar
PubMed
Close
, and
Patrick J. Lammie Division of Parasitic Diseases and Malaria, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia.

Search for other papers by Patrick J. Lammie in
Current site
Google Scholar
PubMed
Close
Restricted access

Malaria serology through assaying for IgG against Plasmodium spp. antigens provides evidence into the infection history for an individual. The multiplex bead assay (MBA) allows for detection of IgG against multiple Plasmodium spp., and can be especially useful in many regions where Plasmodium falciparum is of primary clinical focus, but other species are co-endemic. Dried blood spots were collected from 805 Malian children attending 42 elementary schools in the regions of Mopti, Sikasso, Koulikoro, and Bamako capital district, and IgG assayed by MBA. As southern Mali is known to be holoendemic for P. falciparum, merozoite surface protein 1 19-kDa subunit (MSP-142) and apical membrane antigen 1 (AMA-1) antigens were included for serology against this parasite. Responses to these antigens both provided high estimates for lifetime exposure, with 730 (90%) children with IgG antibodies for MSP-142, 737 (91%) for AMA-1, and 773 (96%) positive for either or both. Also included was the antigen Plasmodium vivax MSP-119, against which 140 (17.4%) children were found to have antibodies. Increases in antibody titers with older age were clearly seen with the P. falciparum antigens, but not with the P. vivax antigen, likely indicating more of a sporadic, rather than sustained transmission for this species. The MBA provides effective opportunities to evaluate malaria transmission through serological analysis for multiple Plasmodium species.

Author Notes

* Address correspondence to Eric Rogier, Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, 1600 Clifton Road, Atlanta, GA 30329. E-mail: wwx6@cdc.gov

Financial support: This work was supported by Dubai Cares Foundation.

Authors' addresses: Eric Rogier and Patrick J. Lammie, Division of Parasitic Diseases and Malaria, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, E-mail: wwx6@cdc.gov and pjl1@cdc.gov. Delynn M. Moss, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, E-mail: dmm3@cdc.gov. Anna N. Chard, Victoria Trinies, and Matthew C. Freeman, Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, E-mails: achard@emory.edu, vtrinies@gmail.com, and mcfreem@emory.edu. Seydou Doumbia, Malaria Research and Training Center, Faculty of Medicine and Odontostomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali, E-mail: sdoumbi@icermali.org.

  • 1.

    Zimmerman PA, Ferreira MU, Howes RE, Mercereau-Puijalon O, 2013. Red blood cell polymorphism and susceptibility to Plasmodium vivax. Adv Parasitol 81: 2776.

    • Search Google Scholar
    • Export Citation
  • 2.

    WHO, 2015. Achieving the Malaria MDG Target: Malaria Essentials. http://apps.who.int/iris/bitstream/10665/184521/1/9789241509442_eng.pdf. Accessed January 21, 2016.

    • Search Google Scholar
    • Export Citation
  • 3.

    Richter J, Franken G, Holtfreter MC, Walter S, Labisch A, Mehlhorn H, 2016. Clinical implications of a gradual dormancy concept in malaria. Parasitol Res 115: 21392148.

    • Search Google Scholar
    • Export Citation
  • 4.

    Toure M, Sanogo D, Dembele S, Diawara SI, Oppfeldt K, Schioler KL, Haidara DB, Traore SF, Alifrangis M, Konradsen F, Doumbia S, 2016. Seasonality and shift in age-specific malaria prevalence and incidence in Binko and Carriere villages close to the lake in Selingue, Mali. Malar J 15: 219.

    • Search Google Scholar
    • Export Citation
  • 5.

    Coulibaly D, Travassos MA, Kone AK, Tolo Y, Laurens MB, Traore K, Diarra I, Niangaly A, Daou M, Dembele A, Sissoko M, Guindo B, Douyon R, Guindo A, Kouriba B, Sissoko MS, Sagara I, Plowe CV, Doumbo OK, Thera MA, 2014. Stable malaria incidence despite scaling up control strategies in a malaria vaccine-testing site in Mali. Malar J 13: 374.

    • Search Google Scholar
    • Export Citation
  • 6.

    WHO, 2015. Mali, World Malaria Report 2015. http://www.who.int/malaria/publications/country-profiles/profile_mli_en.pdf?ua=1. Accessed March 13, 2016.

    • Search Google Scholar
    • Export Citation
  • 7.

    Ba H, Duffy CW, Ahouidi AD, Deh YB, Diallo MY, Tandia A, Conway DJ, 2016. Widespread distribution of Plasmodium vivax malaria in Mauritania on the interface of the Maghreb and west Africa. Malar J 15: 80.

    • Search Google Scholar
    • Export Citation
  • 8.

    Williams J, Njie F, Cairns M, Bojang K, Coulibaly SO, Kayentao K, Abubakar I, Akor F, Mohammed K, Bationo R, Dabira E, Soulama A, Djimde M, Guirou E, Awine T, Quaye SL, Ordi J, Doumbo O, Hodgson A, Oduro A, Magnussen P, Ter Kuile FO, Woukeu A, Milligan P, Tagbor H, Greenwood B, Chandramohan D, 2016. Non-falciparum malaria infections in pregnant women in west Africa. Malar J 15: 53.

    • Search Google Scholar
    • Export Citation
  • 9.

    Bernabeu M, Gomez-Perez GP, Sissoko S, Niambele MB, Haibala AA, Sanz A, Thera MA, Fernandez-Becerra C, Traore K, Alonso PL, Bassat Q, Del Portillo HA, Doumbo O, 2012. Plasmodium vivax malaria in Mali: a study from three different regions. Malar J 11: 405.

    • Search Google Scholar
    • Export Citation
  • 10.

    Wipasa J, Suphavilai C, Okell LC, Cook J, Corran PH, Thaikla K, Liewsaree W, Riley EM, Hafalla JC, 2010. Long-lived antibody and B cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. PLoS Pathog 6: e1000770.

    • Search Google Scholar
    • Export Citation
  • 11.

    Arnold BF, Priest JW, Hamlin KL, Moss DM, Colford JM Jr, Lammie PJ, 2014. Serological measures of malaria transmission in Haiti: comparison of longitudinal and cross-sectional methods. PLoS One 9: e93684.

    • Search Google Scholar
    • Export Citation
  • 12.

    Lammie PJ, Moss DM, Brook Goodhew E, Hamlin K, Krolewiecki A, West SK, Priest JW, 2012. Development of a new platform for neglected tropical disease surveillance. Int J Parasitol 42: 797800.

    • Search Google Scholar
    • Export Citation
  • 13.

    Priest JW, Moss DM, Arnold BF, Hamlin K, Jones CC, Lammie PJ, 2015. Seroepidemiology of Toxoplasma in a coastal region of Haiti: multiplex bead assay detection of immunoglobulin G antibodies that recognize the SAG2A antigen. Epidemiol Infect 143: 618630.

    • Search Google Scholar
    • Export Citation
  • 14.

    Trinies V, Garn JV, Chang HH, Freeman MC, 2016. The impact of a school-based water, sanitation, and hygiene program on absenteeism, diarrhea, and respiratory infection: a matched-control trial in Mali. Am J Trop Med Hyg 94: 14181425.

    • Search Google Scholar
    • Export Citation
  • 15.

    Putaporntip C, Jongwutiwes S, Sakihama N, Ferreira MU, Kho WG, Kaneko A, Kanbara H, Hattori T, Tanabe K, 2002. Mosaic organization and heterogeneity in frequency of allelic recombination of the Plasmodium vivax merozoite surface protein-1 locus. Proc Natl Acad Sci USA 99: 1634816353.

    • Search Google Scholar
    • Export Citation
  • 16.

    Heppner DG Jr, Kester KE, Ockenhouse CF, Tornieporth N, Ofori O, Lyon JA, Stewart VA, Dubois P, Lanar DE, Krzych U, Moris P, Angov E, Cummings JF, Leach A, Hall BT, Dutta S, Schwenk R, Hillier C, Barbosa A, Ware LA, Nair L, Darko CA, Withers MR, Ogutu B, Polhemus ME, Fukuda M, Pichyangkul S, Gettyacamin M, Diggs C, Soisson L, Milman J, Dubois MC, Garcon N, Tucker K, Wittes J, Plowe CV, Thera MA, Duombo OK, Pau MG, Goudsmit J, Ballou WR, Cohen J, 2005. Towards an RTS,S-based, multi-stage, multi-antigen vaccine against falciparum malaria: progress at the Walter Reed Army Institute of Research. Vaccine 23: 22432250.

    • Search Google Scholar
    • Export Citation
  • 17.

    Rogier E, Wiegand R, Moss D, Priest J, Angov E, Dutta S, Journel I, Jean SE, Mace K, Chang M, Lemoine JF, Udhayakumar V, Barnwell JW, 2015. Multiple comparisons analysis of serological data from an area of low Plasmodium falciparum transmission. Malar J 14: 436.

    • Search Google Scholar
    • Export Citation
  • 18.

    Drakeley CJ, Corran PH, Coleman PG, Tongren JE, McDonald SL, Carneiro I, Malima R, Lusingu J, Manjurano A, Nkya WM, Lemnge MM, Cox J, Reyburn H, Riley EM, 2005. Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci USA 102: 51085113.

    • Search Google Scholar
    • Export Citation
  • 19.

    Corran P, Coleman P, Riley E, Drakeley C, 2007. Serology: a robust indicator of malaria transmission intensity? Trends Parasitol 23: 575582.

  • 20.

    Bretscher MT, Supargiyono S, Wijayanti MA, Nugraheni D, Widyastuti AN, Lobo NF, Hawley WA, Cook J, Drakeley CJ, 2013. Measurement of Plasmodium falciparum transmission intensity using serological cohort data from Indonesian schoolchildren. Malar J 12: 21.

    • Search Google Scholar
    • Export Citation
  • 21.

    Ondigo BN, Hodges JS, Ireland KF, Magak NG, Lanar DE, Dutta S, Narum DL, Park GS, Ofulla AV, John CC, 2014. Estimation of recent and long-term malaria transmission in a population by antibody testing to multiple Plasmodium falciparum antigens. J Infect Dis 210: 11231132.

    • Search Google Scholar
    • Export Citation
  • 22.

    Duah NO, Miles DJ, Whittle HC, Conway DJ, 2010. Acquisition of antibody isotypes against Plasmodium falciparum blood stage antigens in a birth cohort. Parasite Immunol 32: 125134.

    • Search Google Scholar
    • Export Citation
  • 23.

    Kangoye DT, Mensah VA, Murungi LM, Nkumama I, Nebie I, Marsh K, Cisse B, Bejon P, Osier FH, Sirima SB; MVVC Infant Immunology Study Group, 2016. Dynamics and role of antibodies to Plasmodium falciparum merozoite antigens in children living in two settings with differing malaria transmission intensity. Vaccine 34: 160166.

    • Search Google Scholar
    • Export Citation
  • 24.

    Rosenberg R, 2007. Plasmodium vivax in Africa: hidden in plain sight? Trends Parasitol 23: 193196.

  • 25.

    Sissoko MS, van den Hoogen LL, Samake Y, Tapily A, Diarra AZ, Coulibaly M, Bouare M, Gaudart J, Knight P, Sauerwein RW, Takken W, Bousema T, Doumbo OK, 2015. Spatial patterns of Plasmodium falciparum clinical incidence, asymptomatic parasite carriage and Anopheles density in two villages in Mali. Am J Trop Med Hyg 93: 790797.

    • Search Google Scholar
    • Export Citation
  • 26.

    Rafiou A, Francine C, Ibrahim S, Sonon P, Dechavanne C, Djilali-Saiah A, Cottrell G, Le Port A, Massougbodji A, Remarque EJ, Luty AJ, Sanni A, Garcia A, Migot-Nabias F, Milet J, Courtin D, 2016. Plasmodium falciparum infection and age influence parasite growth inhibition mediated by IgG in Beninese infants. Acta Trop 159: 111119.

    • Search Google Scholar
    • Export Citation
  • 27.

    Murungi LM, Sonden K, Llewellyn D, Rono J, Guleid F, Williams AR, Ogada E, Thairu A, Farnert A, Marsh K, Draper SJ, Osier FH, 2016. Targets and mechanisms associated with protection from severe Plasmodium falciparum malaria in Kenyan children. Infect Immun 84: 950963.

    • Search Google Scholar
    • Export Citation
  • 28.

    Wahid S, Stresman GH, Kamal SS, Sepulveda N, Kleinschmidt I, Bousema T, Drakeley C, 2016. Heterogeneous malaria transmission in long-term Afghan refugee populations: a cross-sectional study in five refugee camps in northern Pakistan. Malar J 15: 245.

    • Search Google Scholar
    • Export Citation
  • 29.

    Tripura R, Peto TJ, Chalk J, Lee SJ, Sirithiranont P, Nguon C, Dhorda M, von Seidlein L, Maude RJ, Day NP, Imwong M, White NJ, Dondorp AM, 2016. Persistent Plasmodium falciparum and Plasmodium vivax infections in a western Cambodian population: implications for prevention, treatment and elimination strategies. Malar J 15: 181.

    • Search Google Scholar
    • Export Citation
  • 30.

    Ryan JR, Stoute JA, Amon J, Dunton RF, Mtalib R, Koros J, Owour B, Luckhart S, Wirtz RA, Barnwell JW, Rosenberg R, 2006. Evidence for transmission of Plasmodium vivax among a Duffy antigen negative population in western Kenya. Am J Trop Med Hyg 75: 575581.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 88 88 22
Full Text Views 537 163 2
PDF Downloads 138 36 1
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save