Canals M, Ehrenfeld M, Cattan P, 2000. Situation of Mepraia spinolai, a wild vector for Chagas disease in Chile, in relation to other vector from the perspective of their feeding profile. Rev Med Chil 128: 1108–1112.
González CR, Reyes C, Canals A, Parra A, Muñoz X, Rodríguez K, 2015. An entomological and seroepidemiological study of the vectorial-transmission risk of Chagas disease in the coast of northern Chile. Med Vet Entomol 29: 387–392.
Hotez PJ, Dumonteil E, Woc-Colburn L, Serpa JA, Bezek S, Edwards MS, Hallmark CJ, Musselwhite LW, Flink BJ, Bottazzi ME, 2012. Chagas disease: “the new HIV/AIDS of the Americas. PLoS Negl Trop Dis 6: e1498.
Rodrigues J, Albajar P, 2010. Chagas disease: a new worldwide challenge. Nature 465: S6–S7.
Andrade BB, Teixeira CR, Barral A, Barral-Netto M, 2005. Haematophagous arthropod saliva and host defence system: a tale of tear and blood. An Acad Bras Cienc 77: 665–693.
Champagne DE, 1994. The role of salivary vasodilators in bloodfeeding and parasite transmission. Parasitol Today 10: 430–433.
Ribeiro JM, 1995. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis 4: 143–152.
Stark KR, James AA, 1996. Salivary gland anticoagulants in culicine and anopheline mosquitoes (Diptera: Culicidae). J Med Entomol 33: 645–650.
Ribeiro JMC, Francischetti IMB, 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48: 73–88.
Fontaine A, Diouf I, Bakkali N, Missé D, Pagès F, Fusai T, Roger C, Almeras L, 2011. Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit Vectors 4: 187.
Barros VC, Assumpçao JC, Cadete AM, Santos VC, Cavalcante RR, Araújo RN, Pereria MH, Gontijo NF, 2009. The role of salivary and intestinal complement system inhibitors in the midgut protection of triatomines and mosquitoes. PLoS One 4: e6047.
Ricklin D, Hajishengallis G, Yang K, Lambris JD, 2010. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11: 785–797.
Janeway CA Jr, Travers P, Walport M, Schlomchik MJ, 2001. The complement system and innate immunity. Immunobiology: The Immune System in Health and Disease, 5th edition. New York, NY: Garland Science.
Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M, 1999. Calreticulin: one protein, one gene, many functions. Biochem J 344: 281–292.
Coppolino MG, Dedhar S, 1998. Calreticulin. Int J Biochem Cell Biol 30: 553–558.
Baksh S, Michalak M, 1991. Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem 266: 21458–21465.
Lynch NJ, Schneider H, Sim RB, Bickel U, Schwaeble WJ, 2002. In vivo pharmacokinetics of calreticulin S-domain, an inhibitor of the classical complement pathway. Int Immunopharmacol 2: 415–422.
Ferreira V, Valck C, Sánchez G, Gingras A, Tzima S, Molina MC, Sim R, Schwaeble W, Ferreira A, 2004. The classical activation pathway of the human complement system is specifically inhibited by calreticulin from Trypanosoma cruzi. J Immunol 172: 3042–3050.
Cavalcante RR, Pereira MH, Gontijo NF, 2003. Anti-complement activity in the saliva of phlebotomine sand flies and other haematophagous insects. Parasitol 127: 87–93.
Malhotra R, Thiel S, Reid KB, Sim RB, 1990. Human leukocyte C1q receptor binds other soluble proteins with collagen domains. J Exp Med 172: 955–959.
Kasper G, Brown A, Eberl M, Vallar L, Kieffer N, Berry C, Girdwood K, Eggleton P, Quinnell R, Protchard DI, 2001. A calreticulin-like molecule from the human hookworm Necator americanus interacts with C1q and the cytoplasmic signalling domains of some integrins. Parasite Immunol 23: 141–152.
Naresha S, Suryawanshi A, Agarwal M, Singh BP, Joshi P, 2009. Mapping the complement C1q binding site in Haemonchus contortus calreticulin. Mol Biochem Parasitol 166: 42–46.
Oladiran A, Belosevic M, 2009. Trypanosoma carassii calreticulin binds host complement component C1q and inhibits classical complement pathway-mediated lysis. Dev Comp Immunol 34: 396–405.
Ramírez G, Valck C, Molina MC, Ribeiro CH, López N, Sánchez G, Ferreira VP, Billeta R, Aguilar L, Maldonado I, Cattán P, Schwaeble W, Ferreira A, 2011. Trypanosoma cruzi calreticulin: a novel virulence factor that binds complement C1 on the parasite surface and promotes infectivity. Immunobiol 216: 265–273.
Zeledón R, Guardia VM, Zuñiga A, Swartzwelder JC, 1970. Biology and ethology of Triatoma dimidata (Latreille, 1811). Life cycle, amount of blood ingested, resistance of starvation, and size of adults. J Med Entomol 7: 313–319.
Pietrokovsky S, Bottazi V, Schweigmann N, Hedo A, Wisnivesky-Colli C, 1996. Comparison of the blood meal size among Triatoma infestans, T. guasayana and T. sordida (Hemiptera: Reduviidae) of Argentina under laboratory conditions. Mem Inst Qswaldo Cruz 91: 241–242.
Alzamora A, Correa P, Gaggero E, Acuña-Retamar M, Cattán PE, 2007. Feeding behaviour of Mepraia spinolai in two frequent hosts from its habitat. Parasitol Latinoam 62: 112–117.
Krenn HW, Aspök H, 2012. Form, function and evolution of the mouthparts of blood-feeding Arthropoda. Arthropod Struct Dev 41: 101–118.
Jaworski DC, Simmen FA, Lamoreaux W, Needham GR, 1995. A secreted calreticulin protein in ixodid tick (Amblyomma americanum) saliva. J Insect Physiol 41: 369–375.
Jaworski DC, Higgins JA, Radulovic S, Vaughan JJ, Azad AF, 1996. Presence of calreticulin in vector fleas (Siphonaptera). J Med Entomol 33: 482–489.
Ximénez C, González E, Nieves ME, Silva-Olivares A, Shibayama M, Galindo-Gómez S, Escobar-Herrera J, García de León MC, Morán P, Valadez A, Rojas L, Hernández EG, Partida O, Cerritos R, 2014. Entamoeba histolytica and Entamoeba dispar calreticulin: inhibition of classical complement pathway and differences in the level of expression in amoebic liver abscess. BioMed Res Int 2014: 127453.
Sosoniuk E, Vallejos G, Kenawy H, Gaboriaud C, Thielens N, Fujita T, Schwaeble W, Ferreira A, Valck C, 2014. Trypanosoma cruzi calreticulin inhibits the complement lectin pathway activation by direct interaction with L-Ficolin. Mol Immunol 60: 80–85.
Khattab A, Barroso M, Miettinen T, Meri S, 2015. Anopheles midgut epithelium evades human complement activity by capturing factor H from the blood meal. PLoS Negl Trop Dis 9: e0003513.
Opas M, Dziak E, Fliegel L, Michalak M, 1991. Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of non muscle cells. J Cell Physiol 149: 160–171.
Kovacs H, Campbell ID, Strong P, Johnson S, Ward FJ, Reid KB, Eggelton P, 1998. Evidence that C1q binds specifically to CH2-like immunoglobulin C motifs present in the autoantigen calreticulin and interferes with complement activation. Biochem 37: 17865–17874.
Xu G, Fang QQ, Keirans JE, Durden LA, 2004. Cloning and sequencing of putative calreticulin complementary DNAs from four hard tick species. J Parasitol 90: 73–78.
Tsuji N, Morales TH, Ozols VV, Carmody AB, Chandrashekar R, 1998. Molecular characterization of a calcium-binding protein from the filarial parasite Dirofilaria immitis. Mol Biochem Parasitol 97: 69–79.
Johnson S, Michalak M, Opas M, Eggleton P, 2001. The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol 11: 122–129.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 3 | 3 | 3 |
Full Text Views | 312 | 100 | 1 |
PDF Downloads | 96 | 25 | 1 |
Triatoma infestans is an important hematophagous vector of Chagas disease, a neglected chronic illness affecting approximately 6 million people in Latin America. Hematophagous insects possess several molecules in their saliva that counteract host defensive responses. Calreticulin (CRT), a multifunctional protein secreted in saliva, contributes to the feeding process in some insects. Human CRT (HuCRT) and Trypanosoma cruzi CRT (TcCRT) inhibit the classical pathway of complement activation, mainly by interacting through their central S domain with complement component C1. In previous studies, we have detected CRT in salivary gland extracts from T. infestans. We have called this molecule TiCRT. Given that the S domain is responsible for C1 binding, we have tested its role in the classical pathway of complement activation in vertebrate blood. We have cloned and characterized the complete nucleotide sequence of CRT from T. infestans, and expressed its S domain. As expected, this S domain binds to human C1 and, as a consequence, it inhibits the classical pathway of complement, at its earliest stage of activation, namely the generation of C4b. Possibly, the presence of TiCRT in the salivary gland represents an evolutionary adaptation in hematophagous insects to control a potential activation of complement proteins, present in the massive blood meal that they ingest, with deleterious consequences at least on the anterior digestive tract of these insects.
Authors' addresses: Katherine Weinberger, Norberto Collazo, Juan Carlos Aguillón, María Carmen Molina, Carlos Rosas, Jaime Peña, Javier Pizarro, Ismael Maldonado, and Arturo Ferreira, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile, E-mails: kta.weinberger@gmail.com, norberto.collazo@gmail.com, jaguillo@med.uchile.cl, mcmolina@med.uchile.cl, carlosrosas@u.uchile.cl, jaime.pena.alvarez@gmail.com, jpizarrob@ug.uchile.cl, ismael_amf@yahoo.es, and aferreir@med.uchile.cl. Pedro E. Cattan, Departamento de Ciencias Biológicas Animales, Universidad de Chile, Santiago, Chile, E-mail: pcattan@u.uchile.cl. Werner Apt, Clinical Investigation, North Unit of Parasitology, Faculty of Medicine, University of Chile, Santiago, Chile, E-mail: wapt@med.uchile.cl.