• View in gallery

    The spatial distribution of Plasmodium vivax, associated uncertainty, and input data records. (A) The limits and endemicity of P. vivax in 2010.2 Spatial limits of parasite-specific malaria risk are defined by annual parasite incidence (PvAPI) with further medical intelligence, temperature, and aridity masks. Areas were defined as stable, unstable (dark grey areas, PvAPI < 0.1 per 1,000 per annum), or no risk (light grey). The model-based geostatistics point estimates of the annual mean predicted prevalence are shown within the spatial limits of stable transmission. Estimates of parasite rate standardized to 1- to 99-year-olds (PvPR1–99) that range from 0% to > 7% are shown as a spectrum of blue to red. Hatching indicates areas where Duffy negativity gene frequency is predicted to exceed 90%.28 (B) The population-weighted uncertainty as the ratio of the posterior interquartile range to the posterior mean prediction at each pixel on a blue to yellow color spectrum multiplied by the underlying population density and rescaled to 0–1. Higher values (yellow) indicate areas with high uncertainty and large populations. (C) World Health Organization regions by color: the African region (AFRO) in green, the region of the Americas (AMRO) in orange, the eastern Mediterranean region (EMRO) in blue, the European region (EURO) in burgundy, the southeast Asian region (SEARO) in purple, and the western Pacific region (WPRO) in dark green. The countries in each region that are not endemic for P. vivax are slightly greyed out and shaded a lighter color. Those countries that are endemic only with P. vivax malaria are outlined in red. The location of the prevalence surveys that were input into the model that produced the map in Figure 1A is shown as small black points and the surveys conducted since 2010 are shown in yellow, illustrating the increased attention given to P. vivax in recent years.

  • View in gallery

    Comparison of Plasmodium falciparum and Plasmodium vivax prevalence.135 Prevalence values from P. falciparum and P. vivax endemicity surfaces2,3 standardized to the 1- to 99-year age range.72 The shaded areas correspond to each species and show a smoothed approximation of the frequency distribution (a kernel density plot) of parasite prevalence within each geographic region. The black central bar represents the interquartile range and the white circles indicate the median values. CSE Asia = Central and Southeast Asia.

  • View in gallery

    Density plots of parasite rate (PR) pixels for Plasmpdium falciparum and Plasmodium vivax in all regions excluding Africa. The plot (A) shows the PR values age standardized72,191 to all ages (1–99 years), (B) is standardized to 2- to 10-year-olds, and (C) 2- to 6-year-olds. The plots show that regardless of age, the vast majority of P. vivax is found at lower prevalence values.

  • View in gallery

    Pathways to infection of blood and clinical attacks in Plasmodium vivax malaria.51

  • View in gallery

    Zoo-geographical zones and observed time to first relapse.51 (A) The zoo-geographical zones used to describe the time to first relapse. (B) The median observed time to relapse in each study used to obtain individual data. The size of each point varies by sample size and the time to first relapse is shown on a spectrum of red (< 1 month) to dark blue (> 12 months). (C) Violin plots show the observed time to first relapse in individuals from each zone in Figure 5A. The colored areas correspond to each zone and show a smoothed approximation of the frequency distribution (a kernel density plot) of the time to relapse within each geographic region. The black central bars represent the interquartile range, and the white circles indicate the median values.

  • View in gallery

    Modeled relapse incidence and mean time to relapse.51 (A) The relapse incidence per 100,000 person days on a spectrum of blue to red, with red being the highest incidence of relapse. Zone 8 is hatched to indicate that the prediction is to be interpreted with caution. (B) The predicted mean time to relapse on a spectrum from blue to red, with red being most frequent relapse. The numbers of the zones correspond to those shown in Figure 5A.

  • View in gallery

    Schematic of the age–parasite rate relationship by endemicity class. The curves generated by a model for Plasmodium falciparum (Plasmodium vivax would follow a similar pattern) show the age–parasite relationship at different endemicity levels: holoendemic areas are dark green (category of highest transmission levels), hyperendemicity areas green, mesoendemic areas light green, and hypoendemic areas olive green. Figure reproduced from Smith and others (2007).72

  • View in gallery

    The proportion of infections detected by microscopy versus proportion detected by polymerase chain reactions (PCR) for Plasmodium falciparum and Plasmodium vivax. Derived from data in Okell and others 2012 supplementary information.192 Only surveys where both P. vivax and P. falciparum were detected are shown. Of the 44 data points for each species, all but four were for all age groups—the remaining four considered children under age 5 only.

  • View in gallery

    Relation between age and malaria severity in an area of moderate Plasmodium falciparum transmission intensity. With repeated exposure, protection is acquired first against severe malaria, then against illness with malaria, and much more slowly, against microscopy-detected parasitemia. Figure reproduced with permission from White and others.193

  • View in gallery

    Cumulative proportion of the global estimated Plasmodium vivax cases accounted for by the countries with the highest number of cases. Reproduced from the World Malaria Report 2014.132 Lao PDR refers to Lao People's Democratic Republic and DPR Korea to Democratic People's Republic of Korea.

  • View in gallery

    Modeled relationship between parasite prevalence and clinical case incidence for Plasmodium vivax. (A) The pooled prevalence–incidence relationship as point-wise 68% and 95% credible intervals (CrIs) based on data from all zones (Figure 5). To produce a pooled fit, the posterior of each zone was weighted by the number of observations from that zone. (B) The zone-specific prevalence–incidence relationships. Zone 2 is Central America, zone 3 is South America, zone 8 is Monsoon Asia (India), zone 10 is southeast Asia, zone 11 is northern Asia and Europe, and Zone 12 is Melanesia. The 95% CrIs are shown in light grey and the 68% CrIs in dark grey. The colors of the zones correspond to those shown in Figure 6B. Reproduced from Battle and others.135

  • View in gallery

    The variation of the proportion of malaria cases due to Plasmodium vivax with the annual malaria incidence rates in endemic countries, as published in 2001 (the rest being mainly due to Plasmodium falciparum) shown on a logarithmic scale. The data points are color coded and shaped by region. Asia includes Bangladesh, Bhutan, Cambodia, China, Lao People's Democratic Republic, Malaysia, Myanmar, Nepal, Papua New Guinea, Philippines, Solomon Islands, Sri Lanka, Thailand, Vanuatu, and Vietnam. Central Asia and Caucasus includes Armenia, Azerbaijan, Tajikistan, and Turkey. Eastern Mediterranean refers to Afghanistan, Iran, Iraq, Oman, Pakistan, Saudi Arabia, Syria, and Yemen. Latin America includes Argentina, Belize, Bolivia, Brazil, Colombia, Costa Rica, Dominican Republic, Ecuador, El Salvador, Guatemala, French Guyana, Guyana, Haiti, Honduras, Mexico, Nicaragua, Panama, Peru, Suriname, and Venezuela. The percentage of P. vivax for each country is as cases reported by the countries to World Health Organization. Note that the figure excludes data from the African region because high prevalence of the Duffy negativity phenotype results in very low P. vivax transmission28 and occasional case reports of P. vivax are vastly outnumbered by P. falciparum cases. Figure modified from the original published version,79 and shared by Kamini Mendis.

  • View in gallery

    The locations of (A) documented chloroquine-resistant and (B) chloroquine-sensitive Plasmodium vivax. Chloroquine resistance was categorized according to the strength of evidence182: Category 1: > 10% recurrence by day 28, irrespective of confirmation of adequate blood chloroquine concentration; Category 2: confirmed recurrences by day 28 within reported whole-blood chloroquine concentration of > 100 nm; and Category 3: > 5% recurrences by day 28, irrespective of chloroquine concentration. Chloroquine sensitivity was confirmed if patients had enrolled after a symptomatic clinical illness, fewer than 5% recurrences had occurred by day 28, no primaquine was given before day 28, and studies had a sample size of at least 10 patients. Case reports were observations in individual patients of treatment failure during chloroquine prophylaxis, prolonged parasite clearance or P. vivax recurrence following treatment. Figure reproduced from Price and others (2014).182

  • 1.

    PATH, 2011. Staying the Course? Malaria Research and Development in a Time of Economic Uncertainty. Seattle, WA: PATH.

  • 2.

    Gething PW, Elyazar IR, Moyes CL, Smith DL, Battle KE, Guerra CA, Patil AP, Tatem AJ, Howes RE, Myers MF, George DB, Horby P, Wertheim HF, Price RN, Mueller I, Baird JK, Hay SI, 2012. A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis 6: e1814.

    • Search Google Scholar
    • Export Citation
  • 3.

    Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IR, Johnston GL, Tatem AJ, Hay SI, 2011. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J 10: 378.

    • Search Google Scholar
    • Export Citation
  • 4.

    Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL, 2013. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. Adv Parasitol 81: 77131.

    • Search Google Scholar
    • Export Citation
  • 5.

    Baird JK, 2013. Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clin Microbiol Rev 26: 3657.

  • 6.

    Baird JK, 2009. Severe and fatal vivax malaria challenges ‘benign tertian malaria’ dogma. Ann Trop Paediatr 29: 251252.

  • 7.

    Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM, 2007. Vivax malaria: neglected and not benign. Am J Trop Med Hyg 77: 7987.

  • 8.

    Anstey NM, Douglas NM, Poespoprodjo JR, Price RN, 2012. Plasmodium vivax: clinical spectrum, risk factors and pathogenesis. Adv Parasitol 80: 151201.

    • Search Google Scholar
    • Export Citation
  • 9.

    Barcus MJ, Basri H, Picarima H, Manyakori C, Sekartuti, Elyazar I, Bangs MJ, Maguire JD, Baird JK, 2007. Demographic risk factors for severe and fatal vivax and falciparum malaria among hospital admissions in northeastern Indonesian Papua. Am J Trop Med Hyg 77: 984991.

    • Search Google Scholar
    • Export Citation
  • 10.

    Bassat Q, Alonso PL, 2011. Defying malaria: fathoming severe Plasmodium vivax disease. Nat Med 17: 4849.

  • 11.

    Douglas NM, Anstey NM, Buffet PA, Poespoprodjo JR, Yeo TW, White NJ, Price RN, 2012. The anaemia of Plasmodium vivax malaria. Malar J 11: 135.

  • 12.

    Genton B, D'Acremont V, Rare L, Baea K, Reeder JC, Alpers MP, Muller I, 2008. Plasmodium vivax and mixed infections are associated with severe malaria in children: a prospective cohort study from Papua New Guinea. PLoS Med 5: e127.

    • Search Google Scholar
    • Export Citation
  • 13.

    Kochar DK, Tanwar GS, Khatri PC, Kochar SK, Sengar GS, Gupta A, Kochar A, Middha S, Acharya J, Saxena V, Pakalapati D, Garg S, Das A, 2010. Clinical features of children hospitalized with malaria—a study from Bikaner, northwest India. Am J Trop Med Hyg 83: 981989.

    • Search Google Scholar
    • Export Citation
  • 14.

    Lacerda MV, Fragoso SC, Alecrim MG, Alexandre MA, Magalhaes BM, Siqueira AM, Ferreira LC, Araujo JR, Mourao MP, Ferrer M, Castillo P, Martin-Jaular L, Fernandez-Becerra C, del Portillo H, Ordi J, Alonso PL, Bassat Q, 2012. Postmortem characterization of patients with clinical diagnosis of Plasmodium vivax malaria: to what extent does this parasite kill? Clin Infect Dis 55: e67e74.

    • Search Google Scholar
    • Export Citation
  • 15.

    Lacerda MV, Mourao MP, Alexandre MA, Siqueira AM, Magalhaes BM, Martinez-Espinosa FE, Filho FS, Brasil P, Ventura AM, Tada MS, Couto VS, Silva AR, Silva RS, Alecrim MG, 2012. Understanding the clinical spectrum of complicated Plasmodium vivax malaria: a systematic review on the contributions of the Brazilian literature. Malar J 11: 12.

    • Search Google Scholar
    • Export Citation
  • 16.

    Lança EFC, Magalhães BML, Vitor-Silva S, Siqueira AM, Benzecry SG, Alexandre MAA, O'Brien C, Bassat Q, Lacerda MVG, 2012. Risk factors and characterization of Plasmodium vivax-associated admissions to pediatric intensive care units in the Brazilian Amazon. PLoS One 7: e35406.

    • Search Google Scholar
    • Export Citation
  • 17.

    Mahgoub H, Gasim GI, Musa IR, Adam I, 2012. Severe Plasmodium vivax malaria among Sudanese children at New Halfa Hospital, eastern Sudan. Parasit Vectors 5: 154.

    • Search Google Scholar
    • Export Citation
  • 18.

    Price RN, Douglas NM, Anstey NM, 2009. New developments in Plasmodium vivax malaria: severe disease and the rise of chloroquine resistance. Curr Opin Infect Dis 22: 430435.

    • Search Google Scholar
    • Export Citation
  • 19.

    Quispe AM, Pozo E, Guerrero E, Durand S, Baldeviano GC, Edgel KA, Graf PCF, Lescano AG, 2014. Plasmodium vivax hospitalizations in a monoendemic malaria region: severe vivax malaria? Am J Trop Med Hyg 91: 1117.

    • Search Google Scholar
    • Export Citation
  • 20.

    Tjitra E, Anstey NM, Sugiarto P, Warikar N, Kenangalem E, Karyana M, Lampah DA, Price RN, 2008. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med 5: e128.

    • Search Google Scholar
    • Export Citation
  • 21.

    Baird JK, 2010. Eliminating malaria—all of them. Lancet 376: 18831885.

  • 22.

    Bockarie MJ, Dagoro H, 2006. Are insecticide-treated bednets more protective against Plasmodium falciparum than Plasmodium vivax-infected mosquitoes? Malar J 5: 15.

    • Search Google Scholar
    • Export Citation
  • 23.

    Bousema T, Drakeley C, 2011. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev 24: 377410.

    • Search Google Scholar
    • Export Citation
  • 24.

    Luxemburger C, Perea WA, Delmas G, Pruja C, Pecoul B, Moren A, 1994. Permethrin-impregnated bed nets for the prevention of malaria in schoolchildren on the Thai-Burmese border. Trans R Soc Trop Med Hyg 88: 155159.

    • Search Google Scholar
    • Export Citation
  • 25.

    Shanks GD, 2012. Control and elimination of Plasmodium vivax. Adv Parasitol 80: 301341.

  • 26.

    Tanner M, Greenwood B, Whitty CJ, Ansah EK, Price RN, Dondorp AM, von Seidlein L, Baird JK, Beeson JG, Fowkes FJ, Hemingway J, Marsh K, Osier F, 2015. Malaria eradication and elimination: views on how to translate a vision into reality. BMC Med 13: 167.

    • Search Google Scholar
    • Export Citation
  • 27.

    Livingstone FB, 1984. The Duffy blood groups, vivax malaria, and malaria selection in human populations: a review. Hum Biol 56: 413425.

    • Search Google Scholar
    • Export Citation
  • 28.

    Howes RE, Patil AP, Piel FB, Nyangiri OA, Kabaria CW, Gething PW, Zimmerman PA, Barnadas C, Beall CM, Gebremedhin A, Menard D, Williams TN, Weatherall DJ, Hay SI, 2011. The global distribution of the Duffy blood group. Nat Commun 2: 266.

    • Search Google Scholar
    • Export Citation
  • 29.

    Ménard D, Barnadas C, Bouchier C, Henry-Halldin C, Gray LR, Ratsimbasoa A, Thonier V, Carod JF, Domarle O, Colin Y, Bertrand O, Picot J, King CL, Grimberg BT, Mercereau-Puijalon O, Zimmerman PA, 2010. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci USA 107: 59675971.

    • Search Google Scholar
    • Export Citation
  • 30.

    Zimmerman PA, Ferreira MU, Howes RE, Mercereau-Puijalon O, 2013. Red blood cell polymorphism and susceptibility to Plasmodium vivax. Adv Parasitol 81: 2776.

    • Search Google Scholar
    • Export Citation
  • 31.

    Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, Temperely WH, Kabaria CW, Tatem AJ, Manh BH, Elyazar I, Baird JK, Snow RW, Hay SI, 2010. The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis 4: e774.

    • Search Google Scholar
    • Export Citation
  • 32.

    Howes RE, Reiner RC Jr, Battle KE, Longbottom J, Mappin B, Ordanovich D, Tatem AJ, Drakeley C, Gething PW, Zimmerman PA, Smith DL, Hay SI, 2015. Plasmodium vivax transmission in Africa. PLoS Negl Trop Dis 9: e0004222.

    • Search Google Scholar
    • Export Citation
  • 33.

    Battle KE, Gething PW, Elyazar IR, Moyes CL, Sinka ME, Howes RE, Guerra CA, Price RN, Baird KJ, Hay SI, 2012. The global public health significance of Plasmodium vivax. Adv Parasitol 80: 1111.

    • Search Google Scholar
    • Export Citation
  • 34.

    Balk DL, Deichmann U, Yetman G, Pozzi F, Hay SI, Nelson A, 2006. Determining global population distribution: methods, applications and data. Adv Parasitol 62: 119156.

    • Search Google Scholar
    • Export Citation
  • 35.

    CIESIN/IFPRI/WB/CIAT, 2007. Global Rural Urban Mapping Project (GRUMP) alpha: Gridded Population of the World, Version 2, with Urban Reallocation (GPW-UR). Available at: http://sedac.ciesin.columbia.edu/gpw. Accessed November 25, 2011.

    • Search Google Scholar
    • Export Citation
  • 36.

    World Health Organization, 2015. World Malaria Report 2015. Geneva, Switzerland: World Health Organization, 280.

  • 37.

    Mueller I, Zimmerman PA, Reeder JC, 2007. Plasmodium malariae and Plasmodium ovale–the “bashful” malaria parasites. Trends Parasitol 23: 278283.

    • Search Google Scholar
    • Export Citation
  • 38.

    Moreira CM, Abo-Shehada M, Price RN, Drakeley CJ, 2015. A systematic review of sub-microscopic Plasmodium vivax infection. Malar J 14: 360.

  • 39.

    Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, del Portillo HA, 2009. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis 9: 555566.

    • Search Google Scholar
    • Export Citation
  • 40.

    da Silva NS, da Silva-Nunes M, Malafronte RS, Menezes MJ, D'Arcadia RR, Komatsu NT, Scopel KK, Braga EM, Cavasini CE, Cordeiro JA, Ferreira MU, 2010. Epidemiology and control of frontier malaria in Brazil: lessons from community-based studies in rural Amazonia. Trans R Soc Trop Med Hyg 104: 343350.

    • Search Google Scholar
    • Export Citation
  • 41.

    Harris I, Sharrock WW, Bain LM, Gray KA, Bobogare A, Boaz L, Lilley K, Krause D, Vallely A, Johnson ML, Gatton ML, Shanks GD, Cheng Q, 2010. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting. Malar J 9: 254.

    • Search Google Scholar
    • Export Citation
  • 42.

    Katsuragawa TH, Gil LH, Tada MS, de Almeida e Silva A, Costa JD, Araujo M da S, Escobar AL, da Silva LH, 2010. The dynamics of transmission and spatial distribution of malaria in riverside areas of Porto Velho, Rondonia, in the Amazon region of Brazil. PLoS One 5: e9245.

    • Search Google Scholar
    • Export Citation
  • 43.

    Mueller I, Widmer S, Michel D, Maraga S, McNamara DT, Kiniboro B, Sie A, Smith TA, Zimmerman PA, 2009. High sensitivity detection of Plasmodium species reveals positive correlations between infections of different species, shifts in age distribution and reduced local variation in Papua New Guinea. Malar J 8: 41.

    • Search Google Scholar
    • Export Citation
  • 44.

    Steenkeste N, Rogers WO, Okell L, Jeanne I, Incardona S, Duval L, Chy S, Hewitt S, Chou M, Socheat D, Babin FX, Ariey F, Rogier C, 2010. Sub-microscopic malaria cases and mixed malaria infection in a remote area of high malaria endemicity in Rattanakiri Province, Cambodia: implication for malaria elimination. Malar J 9: 108.

    • Search Google Scholar
    • Export Citation
  • 45.

    Imwong M, Nguyen TN, Tripura R, Peto TJ, Lee SJ, Lwin KM, Suangkanarat P, Jeeyapant A, Vihokhern B, Wongsaen K, Van Hue D, Dong le T, Nguyen TU, Lubell Y, von Seidlein L, Dhorda M, Promnarate C, Snounou G, Malleret B, Renia L, Keereecharoen L, Singhasivanon P, Sirithiranont P, Chalk J, Nguon C, Hien TT, Day N, White NJ, Dondorp A, Nosten F, 2015. The epidemiology of subclinical malaria infections in southeast Asia: findings from cross-sectional surveys in Thailand-Myanmar border areas, Cambodia, and Vietnam. Malar J 14: 381.

    • Search Google Scholar
    • Export Citation
  • 46.

    Cheng Q, Cunningham J, Gatton ML, 2015. Systematic review of sub-microscopic P. vivax infections: prevalence and determining factors. PLoS Negl Trop Dis 9: e3413.

    • Search Google Scholar
    • Export Citation
  • 47.

    Waltmann A, Darcy AW, Harris I, Koepfli C, Lodo J, Vahi V, Piziki D, Shanks GD, Barry AE, Whittaker M, Kazura JW, Mueller I, 2015. High rates of asymptomatic, sub-microscopic Plasmodium vivax infection and disappearing Plasmodium falciparum malaria in an area of low transmission in Solomon Islands. PLoS Negl Trop Dis 9: e0003758.

    • Search Google Scholar
    • Export Citation
  • 48.

    Mayxay M, Pukrittayakamee S, Newton PN, White NJ, 2004. Mixed-species malaria infections in humans. Trends Parasitol 20: 233240.

  • 49.

    Douglas NM, Nosten F, Ashley EA, Phaiphun L, van Vugt M, Singhasivanon P, White NJ, Price RN, 2011. Plasmodium vivax recurrence following falciparum and mixed species malaria: risk factors and effect of antimalarial kinetics. Clin Infect Dis 52: 612620.

    • Search Google Scholar
    • Export Citation
  • 50.

    Machado Siqueira A, Lopes Magalhaes BM, Cardoso Melo G, Ferrer M, Castillo P, Martin-Jaular L, Fernandez-Becerra C, Ordi J, Martinez A, Lacerda MV, del Portillo HA, 2012. Spleen rupture in a case of untreated Plasmodium vivax infection. PLoS Negl Trop Dis 6: e1934.

    • Search Google Scholar
    • Export Citation
  • 51.

    Battle KE, Karhunen MS, Bhatt S, Gething PW, Howes RE, Golding N, Van Boeckel T, Messina JP, Shanks GD, Smith DL, Baird JK, Hay SI, 2014. Geographical variation in Plasmodium vivax relapse. Malar J 13: 144.

    • Search Google Scholar
    • Export Citation
  • 52.

    White NJ, Imwong M, 2012. Relapse. Adv Parasitol 80: 113150.

  • 53.

    Baird JK, 2004. Chloroquine resistance in Plasmodium vivax. Antimicrob Agents Chemother 48: 40754083.

  • 54.

    Imwong M, Snounou G, Pukrittayakamee S, Tanomsing N, Kim JR, Nandy A, Guthmann JP, Nosten F, Carlton J, Looareesuwan S, Nair S, Sudimack D, Day NP, Anderson TJ, White NJ, 2007. Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites. J Infect Dis 195: 927933.

    • Search Google Scholar
    • Export Citation
  • 55.

    Koepfli C, Ross A, Kiniboro B, Smith TA, Zimmerman PA, Siba P, Mueller I, Felger I, 2011. Multiplicity and diversity of Plasmodium vivax infections in a highly endemic region in Papua New Guinea. PLoS Negl Trop Dis 5: e1424.

    • Search Google Scholar
    • Export Citation
  • 56.

    Betuela I, Rosanas-Urgell A, Kiniboro B, Stanisic DI, Samol L, de Lazzari E, del Portillo HA, Siba P, Alonso PL, Bassat Q, Mueller I, 2012. Relapses contribute significantly to the risk of Plasmodium vivax infection and disease in Papua New Guinean children 1–5 years of age. J Infect Dis 206: 17711780.

    • Search Google Scholar
    • Export Citation
  • 57.

    Nelwan EJ, Ekawati LL, Tjahjono B, Setiabudy R, Sutanto I, Chand K, Ekasari T, Djoko D, Basri H, Taylor WR, Duparc S, Subekti D, Elyazar I, Noviyanti R, Sudoyo H, Baird JK, 2015. Randomized trial of primaquine hypnozoitocidal efficacy when administered with artemisinin-combined blood schizontocides for radical cure of Plasmodium vivax in Indonesia. BMC Med 13: 294.

    • Search Google Scholar
    • Export Citation
  • 58.

    Sutanto I, Tjahjono B, Basri H, Taylor WR, Putri FA, Meilia RA, Setiabudy R, Nurleila S, Ekawati LL, Elyazar I, Farrar J, Sudoyo H, Baird JK, 2013. Randomized, open-label trial of primaquine against vivax malaria relapse in Indonesia. Antimicrob Agents Chemother 57: 11281135.

    • Search Google Scholar
    • Export Citation
  • 59.

    Coatney GR, Cooper WC, 1948. Recrudescence and relapse in vivax malaria. Proceedings of the 4th International Congress on Tropical Medicine, Vol. 1. Washington, DC: US Government Printing Office, 629639.

    • Search Google Scholar
    • Export Citation
  • 60.

    Garnham PC, Bray RS, Bruce-Chwatt LJ, Draper CC, Killick-Kendrick R, Sergiev PG, Tiburskaja NA, Shute PG, Maryon M, 1975. A strain of Plasmodium vivax characterized by prolonged incubation: morphological and biological characteristics. Bull World Health Organ 52: 2132.

    • Search Google Scholar
    • Export Citation
  • 61.

    Winckel CWF, 1955. Long latency in Plasmodium vivax infections in a temperate zone. Doc Med Geogr Trop 7: 292298.

  • 62.

    Coatney GR, Collins WE, Contacos PG, 1971. Plasmodium vivax. The Primate Malarias. Bethesda, MD: U.S. National Institute of Allergy and Infectious Diseases, 4367.

    • Search Google Scholar
    • Export Citation
  • 63.

    Baird JK, Rieckmann KH, 2003. Can primaquine therapy for vivax malaria be improved? Trends Parasitol 19: 115120.

  • 64.

    Shute PG, Lupascu G, Branzei P, Maryon M, Constantinescu P, Bruce-Chwatt LJ, Draper CC, Killick-Kendrick R, Garnham PC, 1976. A strain of Plasmodium vivax characterized by prolonged incubation: the effect of numbers of sporozoites on the length of the prepatent period. Trans R Soc Trop Med Hyg 70: 474481.

    • Search Google Scholar
    • Export Citation
  • 65.

    White NJ, 2011. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J 10: 297.

  • 66.

    Shanks GD, White NJ, 2013. The activation of vivax malaria hypnozoites by infectious diseases. Lancet Infect Dis 13: 900906.

  • 67.

    Richie TL, 1988. Interactions between malaria parasites infecting the same vertebrate host. Parasitology 96: 607639.

  • 68.

    Hulden L, Hulden L, 2011. Activation of the hypnozoite: a part of Plasmodium vivax life cycle and survival. Malar J 10: 90.

  • 69.

    Macdonald G, 1957. Local Features of Malaria. The Epidemiology and Control of Malaria. London, United Kingdom: Oxford University Press, 6399.

    • Search Google Scholar
    • Export Citation
  • 70.

    Howes RE, Battle KE, Satyagraha AW, Baird JK, Hay SI, 2013. G6PD deficiency: global distribution, genetic variants and primaquine therapy. Adv Parasitol 81: 133201.

    • Search Google Scholar
    • Export Citation
  • 71.

    Cotter C, Sturrock HJ, Hsiang MS, Liu J, Phillips AA, Hwang J, Gueye CS, Fullman N, Gosling RD, Feachem RG, 2013. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet 382: 900911.

    • Search Google Scholar
    • Export Citation
  • 72.

    Smith DL, Guerra CA, Snow RW, Hay SI, 2007. Standardizing estimates of the Plasmodium falciparum parasite rate. Malar J 6: 131.

  • 73.

    Smith T, Hii JL, Genton B, Muller I, Booth M, Gibson N, Narara A, Alpers MP, 2001. Associations of peak shifts in age–prevalence for human malarias with bednet coverage. Trans R Soc Trop Med Hyg 95: 16.

    • Search Google Scholar
    • Export Citation
  • 74.

    Senn N, Rarau P, Stanisic DI, Robinson L, Barnadas C, Manong D, Salib M, Iga J, Tarongka N, Ley S, Rosanas-Urgell A, Aponte JJ, Zimmerman PA, Beeson JG, Schofield L, Siba P, Rogerson SJ, Reeder JC, Mueller I, 2012. Intermittent preventive treatment for malaria in Papua New Guinean infants exposed to Plasmodium falciparum and P. vivax: a randomized controlled trial. PLoS Med 9: e1001195.

    • Search Google Scholar
    • Export Citation
  • 75.

    Michon P, Cole-Tobian JL, Dabod E, Schoepflin S, Igu J, Susapu M, Tarongka N, Zimmerman PA, Reeder JC, Beeson JG, Schofield L, King CL, Mueller I, 2007. The risk of malarial infections and disease in Papua New Guinean children. Am J Trop Med Hyg 76: 9971008.

    • Search Google Scholar
    • Export Citation
  • 76.

    Poespoprodjo JR, Fobia W, Kenangalem E, Lampah DA, Hasanuddin A, Warikar N, Sugiarto P, Tjitra E, Anstey NM, Price RN, 2009. Vivax malaria: a major cause of morbidity in early infancy. Clin Infect Dis 48: 17041712.

    • Search Google Scholar
    • Export Citation
  • 77.

    Koepfli C, Colborn KL, Kiniboro B, Lin E, Speed TP, Siba PM, Felger I, Mueller I, 2013. A high force of Plasmodium vivax blood-stage infection drives the rapid acquisition of immunity in Papua New Guinean children. PLoS Negl Trop Dis 7: e2403.

    • Search Google Scholar
    • Export Citation
  • 78.

    Fowkes FJ, Boeuf P, Beeson JG, 2016. Immunity to malaria in an era of declining malaria transmission. Parasitology 143: 139153.

  • 79.

    Mendis K, Sina BJ, Marchesini P, Carter R, 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64: 97106.

  • 80.

    Phimpraphi W, Paul RE, Yimsamran S, Puangsa-art S, Thanyavanich N, Maneeboonyang W, Prommongkol S, Sornklom S, Chaimungkun W, Chavez IF, Blanc H, Looareesuwan S, Sakuntabhai A, Singhasivanon P, 2008. Longitudinal study of Plasmodium falciparum and Plasmodium vivax in a Karen population in Thailand. Malar J 7: 99.

    • Search Google Scholar
    • Export Citation
  • 81.

    Li N, Parker DM, Yang Z, Fan Q, Zhou G, Ai G, Duan J, Lee MC, Yan G, Matthews SA, Cui L, Wang Y, 2013. Risk factors associated with slide positivity among febrile patients in a conflict zone of north-eastern Myanmar along the China-Myanmar border. Malar J 12: 361.

    • Search Google Scholar
    • Export Citation
  • 82.

    Ciuca M, Ballif L, Chelarescu-Viera M, 1934. Immunity in malaria. Trans R Soc Trop Med Hyg 24: 4.

  • 83.

    Qi Q, Guerra CA, Moyes CL, Elyazar IR, Gething PW, Hay SI, Tatem AJ, 2012. The effects of urbanization on global Plasmodium vivax malaria transmission. Malar J 11: 403.

    • Search Google Scholar
    • Export Citation
  • 84.

    Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, Gething PW, Elyazar IR, Kabaria CW, Harbach RE, Hay SI, 2011. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic precis. Parasit Vectors 4: 89.

    • Search Google Scholar
    • Export Citation
  • 85.

    Anvikar AR, Shah N, Dhariwal AC, Sonal GS, Pradhan MM, Ghosh SK, Valecha N, 2016. Epidemiology of Plasmodium vivax malaria in India. Am J Trop Med Hyg 95 (Suppl 6): 108120.

    • Search Google Scholar
    • Export Citation
  • 86.

    Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Okara RM, Van Boeckel T, Godfray HC, Harbach RE, Hay SI, 2010. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic precis. Parasit Vectors 3: 117.

    • Search Google Scholar
    • Export Citation
  • 87.

    Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, Van Boeckel T, Kabaria CW, Harbach RE, Hay SI, 2010. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic precis. Parasit Vectors 3: 72.

    • Search Google Scholar
    • Export Citation
  • 88.

    Killeen GF, 2014. Characterizing, controlling and eliminating residual malaria transmission. Malaria J 13: 330. doi:101186/1475-2875-13-330.

    • Search Google Scholar
    • Export Citation
  • 89.

    Nyunt MH, Aye KM, Kyaw MP, Kyaw TT, Hlaing T, Oo K, Zaw NN, Aye TT, San NA, 2014. Challenges in universal coverage and utilization of insecticide-treated bed nets in migrant plantation workers in Myanmar. Malar J 13: 211.

    • Search Google Scholar
    • Export Citation
  • 90.

    World Health Organization and Malaria Consortium, 2011. Workshop to Consolidate Lessons Learned on BCC and Mobile/Migrant Populations in the Strategy to Contain Artemisinin Resistant Malaria. Meeting report, July 5–7, 2011. Luang Prabang, Lao PDR: World Health Organization and Malaria Consortium.

    • Search Google Scholar
    • Export Citation
  • 91.

    Desai M, ter Kuile FO, Nosten F, McGready R, Asamoa K, Brabin B, Newman RD, 2007. Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis 7: 93104.

    • Search Google Scholar
    • Export Citation
  • 92.

    WHO Evidence Review Group, 2012. Intermittent Preventative Treatment of Malaria in Pregnancy (IPTp) with Sulfadoxine-Pyrimethamine (SP). Meeting report, July 9–11, 2012. Geneva, Switzerland: World Health Organization.

    • Search Google Scholar
    • Export Citation
  • 93.

    Rijken MJ, McGready R, Boel ME, Poespoprodjo R, Singh N, Syafruddin D, Rogerson S, Nosten F, 2012. Malaria in pregnancy in the Asia-Pacific region. Lancet Infect Dis 12: 7588.

    • Search Google Scholar
    • Export Citation
  • 94.

    Rodriguez-Morales AJ, Sanchez E, Vargas M, Piccolo C, Colina R, Arria M, Franco-Paredes C, 2006. Pregnancy outcomes associated with Plasmodium vivax malaria in northeastern Venezuela. Am J Trop Med Hyg 74: 755757.

    • Search Google Scholar
    • Export Citation
  • 95.

    Rogerson SJ, Hviid L, Duffy PE, Leke RF, Taylor DW, 2007. Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis 7: 105117.

  • 96.

    Poespoprodjo JR, Fobia W, Kenangalem E, Lampah DA, Warikar N, Seal A, McGready R, Sugiarto P, Tjitra E, Anstey NM, Price RN, 2008. Adverse pregnancy outcomes in an area where multidrug-resistant Plasmodium vivax and Plasmodium falciparum infections are endemic. Clin Infect Dis 46: 13741381.

    • Search Google Scholar
    • Export Citation
  • 97.

    Brabin BJ, Ginny M, Sapau J, Galme K, Paino J, 1990. Consequences of maternal anaemia on outcome of pregnancy in a malaria endemic area in Papua New Guinea. Ann Trop Med Parasitol 84: 1124.

    • Search Google Scholar
    • Export Citation
  • 98.

    Luxemburger C, Ricci F, Nosten F, Raimond D, Bathet S, White NJ, 1997. The epidemiology of severe malaria in an area of low transmission in Thailand. Trans R Soc Trop Med Hyg 91: 256262.

    • Search Google Scholar
    • Export Citation
  • 99.

    McGready R, Lee SJ, Wiladphaingern J, Ashley EA, Rijken MJ, Boel M, Simpson JA, Paw MK, Pimanpanarak M, Mu O, Singhasivanon P, White NJ, Nosten FH, 2012. Adverse effects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: a population-based study. Lancet Infect Dis 12: 388396.

    • Search Google Scholar
    • Export Citation
  • 100.

    Baird JK, Hoffman SL, 2004. Primaquine therapy for malaria. Clin Infect Dis 39: 13361345.

  • 101.

    Piel FB, Howes RE, Nyangiri OA, Moyes CL, Williams TN, Weatherall DJ, Hay SI, 2013. Online biomedical resources for malaria-related red cell disorders. Hum Mutat 34: 937944.

    • Search Google Scholar
    • Export Citation
  • 102.

    Kwiatkowski DP, 2005. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 77: 171192.

    • Search Google Scholar
    • Export Citation
  • 103.

    Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Williams TN, Weatherall DJ, Hay SI, 2010. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat Commun 1: 104.

    • Search Google Scholar
    • Export Citation
  • 104.

    Cattani JA, Gibson FD, Alpers MP, Crane GG, 1987. Hereditary ovalocytosis and reduced susceptibility to malaria in Papua New Guinea. Trans R Soc Trop Med Hyg 81: 705709.

    • Search Google Scholar
    • Export Citation
  • 105.

    Rosanas-Urgell A, Lin E, Manning L, Rarau P, Laman M, Senn N, Grimberg BT, Tavul L, Stanisic DI, Robinson LJ, Aponte JJ, Dabod E, Reeder JC, Siba P, Zimmerman PA, Davis TM, King CL, Michon P, Mueller I, 2012. Reduced risk of Plasmodium vivax malaria in Papua New Guinean children with southeast Asian ovalocytosis in two cohorts and a case-control study. PLoS Med 9: e1001305.

    • Search Google Scholar
    • Export Citation
  • 106.

    Leslie T, Briceno M, Mayan I, Mohammed N, Klinkenberg E, Sibley CH, Whitty CJ, Rowland M, 2010. The impact of phenotypic and genotypic G6PD deficiency on risk of Plasmodium vivax infection: a case-control study amongst Afghan refugees in Pakistan. PLoS Med 7: e1000283.

    • Search Google Scholar
    • Export Citation
  • 107.

    Louicharoen C, Patin E, Paul R, Nuchprayoon I, Witoonpanich B, Peerapittayamongkol C, Casademont I, Sura T, Laird NM, Singhasivanon P, Quintana-Murci L, Sakuntabhai A, 2009. Positively selected G6PD-Mahidol mutation reduces Plasmodium vivax density in southeast Asians. Science 326: 15461549.

    • Search Google Scholar
    • Export Citation
  • 108.

    O'Donnell A, Premawardhena A, Arambepola M, Samaranayake R, Allen SJ, Peto TE, Fisher CA, Cook J, Corran PH, Olivieri NF, Weatherall DJ, 2009. Interaction of malaria with a common form of severe thalassemia in an Asian population. Proc Natl Acad Sci USA 106: 1871618721.

    • Search Google Scholar
    • Export Citation
  • 109.

    Williams TN, Maitland K, Bennett S, Ganczakowski M, Peto TE, Newbold CI, Bowden DK, Weatherall DJ, Clegg JB, 1996. High incidence of malaria in alpha-thalassaemic children. Nature 383: 522525.

    • Search Google Scholar
    • Export Citation
  • 110.

    Douglas NM, John GK, von Seidlein L, Anstey NM, Price RN, 2012. Chemotherapeutic strategies for reducing transmission of Plasmodium vivax malaria. Adv Parasitol 80: 271300.

    • Search Google Scholar
    • Export Citation
  • 111.

    Zimmerman PA, Howes RE, 2015. Malaria diagnosis for malaria elimination. Curr Opin Infect Dis 28: 446454.

  • 112.

    Alves FP, Durlacher RR, Menezes MJ, Krieger H, Silva LH, Camargo EP, 2002. High prevalence of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in native Amazonian populations. Am J Trop Med Hyg 66: 641648.

    • Search Google Scholar
    • Export Citation
  • 113.

    Alves FP, Gil LH, Marrelli MT, Ribolla PE, Camargo EP, Da Silva LH, 2005. Asymptomatic carriers of Plasmodium spp. as infection source for malaria vector mosquitoes in the Brazilian Amazon. J Med Entomol 42: 777779.

    • Search Google Scholar
    • Export Citation
  • 114.

    Atkinson JA, Johnson ML, Wijesinghe R, Bobogare A, Losi L, O'Sullivan M, Yamaguchi Y, Kenilorea G, Vallely A, Cheng Q, Ebringer A, Bain L, Gray K, Harris I, Whittaker M, Reid H, Clements A, Shanks D, 2012. Operational research to inform a sub-national surveillance intervention for malaria elimination in Solomon Islands. Malar J 11: 101.

    • Search Google Scholar
    • Export Citation
  • 115.

    Coleman RE, Maneechai N, Rachaphaew N, Kumpitak C, Miller RS, Soyseng V, Thimasarn K, Sattabongkot J, 2002. Comparison of field and expert laboratory microscopy for active surveillance for asymptomatic Plasmodium falciparum and Plasmodium vivax in western Thailand. Am J Trop Med Hyg 67: 141144.

    • Search Google Scholar
    • Export Citation
  • 116.

    Coleman RE, Sattabongkot J, Promstaporm S, Maneechai N, Tippayachai B, Kengluecha A, Rachapaew N, Zollner G, Miller RS, Vaughan JA, Thimasarn K, Khuntirat B, 2006. Comparison of PCR and microscopy for the detection of asymptomatic malaria in a Plasmodium falciparum/vivax endemic area in Thailand. Malar J 5: 121.

    • Search Google Scholar
    • Export Citation
  • 117.

    Ganguly S, Saha P, Guha SK, Biswas A, Das S, Kundu PK, Maji AK, 2013. High prevalence of asymptomatic malaria in a tribal population in eastern India. J Clin Microbiol 51: 14391444.

    • Search Google Scholar
    • Export Citation
  • 118.

    Herdiana H, Fuad A, Asih PB, Zubaedah S, Arisanti RR, Syafruddin D, Kusnanto H, Sumiwi ME, Yuniarti T, Imran A, Rahmadyani R, Yani M, Kusriastuti R, Tarmizi SN, Laihad FJ, Hawley WA, 2013. Progress towards malaria elimination in Sabang Municipality, Aceh, Indonesia. Malar J 12: 42.

    • Search Google Scholar
    • Export Citation
  • 119.

    Kitvatanachai S, Janyapoon K, Rhongbutsri P, Thap LC, 2003. A survey on malaria in mobile Cambodians in Aranyaprathet, Sa Kaeo Province, Thailand. Southeast Asian J Trop Med Public Health 34: 4853.

    • Search Google Scholar
    • Export Citation
  • 120.

    Rajendran P, Rajesh PK, Thyagarajan SP, Balakrishnan P, Hari R, Joyee AG, Kurien T, Krishnmurthy P, Jacob V, 2001. Asymptomatic malarial parasitaemia in Tamil Nadu. J Assoc Physicians India 49: 11611164.

    • Search Google Scholar
    • Export Citation
  • 121.

    Goonewardena D, 1998. Study of Clinical Immunity to Malaria. Colombo, Sri Lanka: University of Colombo.

  • 122.

    Doolan DL, Dobano C, Baird JK, 2009. Acquired immunity to malaria. Clin Microbiol Rev 22: 1336.

  • 123.

    Barbosa S, Gozze AB, Lima NF, Batista CL, Bastos M da S, Nicolete VC, Fontoura PS, Goncalves RM, Viana SA, Menezes MJ, Scopel KK, Cavasini CE, Malafronte R dos S, da Silva-Nunes M, Vinetz JM, Castro MC, Ferreira MU, 2014. Epidemiology of disappearing Plasmodium vivax malaria: a case study in rural Amazonia. PLoS Negl Trop Dis 8: e3109.

    • Search Google Scholar
    • Export Citation
  • 124.

    Vallejo AF, Garcia J, Amado-Garavito AB, Arevalo-Herrera M, Herrera S, 2016. Plasmodium vivax gametocyte infectivity in sub-microscopic infections. Malar J 15: 48.

    • Search Google Scholar
    • Export Citation
  • 125.

    White NJ, 2008. The role of anti-malarial drugs in eliminating malaria. Malar J 7 (Suppl 1): S8.

  • 126.

    McKenzie FE, Wongsrichanalai C, Magill AJ, Forney JR, Permpanich B, Lucas C, Erhart LM, O'Meara WP, Smith DL, Sirichaisinthop J, Gasser RA Jr, 2006. Gametocytemia in Plasmodium vivax and Plasmodium falciparum infections. J Parasitol 92: 12811285.

    • Search Google Scholar
    • Export Citation
  • 127.

    Moonen B, Cohen JM, Snow RW, Slutsker L, Drakeley C, Smith DL, Abeyasinghe RR, Rodriguez MH, Maharaj R, Tanner M, Targett G, 2010. Operational strategies to achieve and maintain malaria elimination. Lancet 376: 15921603.

    • Search Google Scholar
    • Export Citation
  • 128.

    White MT, Karl S, Battle KE, Hay SI, Mueller I, Ghani AC, 2014. Modelling the contribution of the hypnozoite reservoir to Plasmodium vivax transmission. eLife 3: e04692.

    • Search Google Scholar
    • Export Citation
  • 129.

    Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle KE, Moyes CL, Henry A, Eckhoff PA, Wenger EA, Briet O, Penny MA, Smith TA, Bennett A, Yukich J, Eisele TP, Griffin JT, Fergus CA, Lynch M, Lindgren F, Murray CJ, Smith DL, Hay SI, Cibulskis RE, Gething PW, 2015. The impact of malaria control on Plasmodium falciparum in Africa, 2000–2015. Nature 526: 207211.

    • Search Google Scholar
    • Export Citation
  • 130.

    Hay SI, Okiro EA, Gething PW, Patil AP, Tatem AJ, Guerra CA, Snow RW, 2010. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007. PLoS Med 7: e1000290.

    • Search Google Scholar
    • Export Citation
  • 131.

    Cibulskis RE, Aregawi M, Williams R, Otten M, Dye C, 2011. Worldwide incidence of malaria in 2009: estimates, time trends, and a critique of methods. PLoS Med 8: e1001142.

    • Search Google Scholar
    • Export Citation
  • 132.

    World Health Organization, 2014. World Malaria Report 2014. Geneva, Switzerland: World Health Organization, 226.

  • 133.

    Guerra CA, Hay SI, Lucioparedes LS, Gikandi PW, Tatem AJ, Noor AM, Snow RW, 2007. Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project. Malar J 6: 17.

    • Search Google Scholar
    • Export Citation
  • 134.

    Patil AP, Okiro EA, Gething PW, Guerra CA, Sharma SK, Snow RW, Hay SI, 2009. Defining the relationship between Plasmodium falciparum parasite rate and clinical disease: statistical models for disease burden estimation. Malar J 8: 186.

    • Search Google Scholar
    • Export Citation
  • 135.

    Battle KE, Cameron E, Guerra CA, Golding N, Duda KA, Howes RE, Elyazar IRF, Baird JK, Reiner RC Jr, Smith DL, Gething PW, Hay SI, 2015. Defining the relationship between Plasmodium vivax parasite rate and clinical disease. Malar J 14: 191.

    • Search Google Scholar
    • Export Citation
  • 136.

    Cameron E, Battle KE, Bhatt S, Weiss DJ, Bisanzio D, Mappin B, Dalrymple U, Hay SI, Smith DL, Griffin JT, Wenger EA, Eckhoff PA, Smith TA, Penny MA, Gething PW, 2015. Defining the relationship between infection prevalence and clinical incidence of Plasmodium falciparum malaria. Nat Commun 6: 8170.

    • Search Google Scholar
    • Export Citation
  • 137.

    Battle KE, Guerra CA, Golding N, Duda KA, Cameron E, Howes RE, Elyazar IRF, Baird JK, Reiner RC Jr, Smith DL, Gething PW, Hay SI, 2015. Global database of matched Plasmodium falciparum and P. vivax incidence and prevalence records from 1985 to 2013. Sci Data 2: 150012.

    • Search Google Scholar
    • Export Citation
  • 138.

    Pampana E, 1969. A Textbook of Malaria Eradication. London, United Kingdom: Oxford University Press.

  • 139.

    Sattabongkot J, Tsuboi T, Zollner GE, Sirichaisinthop J, Cui L, 2004. Plasmodium vivax transmission: chances for control? Trends Parasitol 20: 192198.

    • Search Google Scholar
    • Export Citation
  • 140.

    Ministry of Health Sri Lanka and World Health Organization and the University of California-San Francisco, 2012. Eliminating Malaria: Case-study 3. Progress towards Elimination in Sri Lanka. Geneva, Switzerland: World Health Organization.

    • Search Google Scholar
    • Export Citation
  • 141.

    Coura JR, Suarez-Mutis M, Ladeia-Andrade S, 2006. A new challenge for malaria control in Brazil: asymptomatic Plasmodium infection–a review. Mem Inst Oswaldo Cruz 101: 229237.

    • Search Google Scholar
    • Export Citation
  • 142.

    Povoa MM, Conn JE, Schlichting CD, Amaral JC, Segura MN, Da Silva AN, Dos Santos CC, Lacerda RN, De Souza RT, Galiza D, Santa Rosa EP, Wirtz RA, 2003. Malaria vectors, epidemiology, and the re-emergence of Anopheles darlingi in Belem, Para, Brazil. J Med Entomol 40: 379386.

    • Search Google Scholar
    • Export Citation
  • 143.

    World Health Organization, 2013. World Malaria Report 2013. Geneva, Switzerland: World Health Organization, 199.

  • 144.

    Feachem RG, Phillips AA, Hwang J, Cotter C, Wielgosz B, Greenwood BM, Sabot O, Rodriguez MH, Abeyasinghe RR, Ghebreyesus TA, Snow RW, 2010. Shrinking the malaria map: progress and prospects. Lancet 376: 15661578.

    • Search Google Scholar
    • Export Citation
  • 145.

    UCSF Global Health Group and Malaria Atlas Project, 2011. Atlas of Malaria-Eliminating Countries. San Francisco, CA: University of California.

    • Search Google Scholar
    • Export Citation
  • 146.

    World Health Organization, 2015. Confronting Plasmodium vivax Malaria. Geneva, Switzerland: World Health Organization, 12.

  • 147.

    Baird JK, 2007. Neglect of Plasmodium vivax malaria. Trends Parasitol 23: 533539.

  • 148.

    Galinski MR, Barnwell JW, 2008. Plasmodium vivax: who cares? Malar J 7 (Suppl 1): S9.

  • 149.

    Kochar DK, Saxena V, Singh N, Kochar SK, Kumar SV, Das A, 2005. Plasmodium vivax malaria. Emerg Infect Dis 11: 132134.

  • 150.

    World Health Organization, 2012. Management of Severe Malaria: A Practical Handbook, 3rd edition. Geneva, Switzerland: World Health Organization.

    • Search Google Scholar
    • Export Citation
  • 151.

    Kochar DK, Das A, Kochar SK, Saxena V, Sirohi P, Garg S, Kochar A, Khatri MP, Gupta V, 2009. Severe Plasmodium vivax malaria: a report on serial cases from Bikaner in northwestern India. Am J Trop Med Hyg 80: 194198.

    • Search Google Scholar
    • Export Citation
  • 152.

    Kochar DK, Pakalapati D, Kochar SK, Sirohi P, Khatri MP, Kochar A, Das A, 2007. An unexpected cause of fever and seizures. Lancet 370: 908.

  • 153.

    Rahimi BA, Thakkinstian A, White NJ, Sirivichayakul C, Dondorp AM, Chokejindachai W, 2014. Severe vivax malaria: a systematic review and meta-analysis of clinical studies since 1900. Malar J 13: 481.

    • Search Google Scholar
    • Export Citation
  • 154.

    Douglas NM, Lampah DA, Kenangalem E, Simpson JA, Poespoprodjo JR, Sugiarto P, Anstey NM, Price RN, 2013. Major burden of severe anemia from non-falciparum malaria species in southern Papua: a hospital-based surveillance study. PLoS Med 10: e1001575; discussion e1001575.

    • Search Google Scholar
    • Export Citation
  • 155.

    Lampah DA, Yeo TW, Malloy M, Kenangalem E, Douglas NM, Ronaldo D, Sugiarto P, Simpson JA, Poespoprodjo JR, Anstey NM, Price RN, 2014. Severe malarial thrombocytopenia: a risk factor for mortality in Papua, Indonesia. J Infect Dis 211: 623634.

    • Search Google Scholar
    • Export Citation
  • 156.

    Douglas NM, Pontororing GJ, Lampah DA, Yeo TW, Kenangalem E, Poespoprodjo J, Ralph AP, Bangs MJ, Sugiarto P, Anstey NM, Price RN, 2014. Mortality attributable to Plasmodium vivax malaria: a clinical audit from Papua, Indonesia. BMC Med 12: 217.

    • Search Google Scholar
    • Export Citation
  • 157.

    Rajahram GS, Barber BE, William T, Grigg MJ, Menon J, Yeo TW, Anstey NM, 2016. Falling Plasmodium knowlesi malaria death rate among adults despite rising incidence, Sabah, Malaysia, 2010–2014. Emerg Infect Dis 22: 4148.

    • Search Google Scholar
    • Export Citation
  • 158.

    World Health Organization, 2015. Control and Elimination of Plasmodium vivax Malaria: A Technical Brief. Geneva, Switzerland: World Health Organization, 64.

    • Search Google Scholar
    • Export Citation
  • 159.

    Scott JAG, Berkley JA, Mwangi I, Ochola L, Uyoga S, Macharia A, Ndila C, Lowe BS, Mwarumba S, Bauni E, Marsh K, Williams TN, 2011. Relation between falciparum malaria and bacteraemia in Kenyan children: a population-based, case-control study and a longitudinal study. Lancet 378: 13161323.

    • Search Google Scholar
    • Export Citation
  • 160.

    Olupot-Olupot P, Urban BC, Jemutai J, Nteziyaremye J, Fanjo HM, Karanja H, Karisa J, Ongodia P, Bwonyo P, Gitau EN, Talbert A, Akech S, Maitland K, 2013. Endotoxaemia is common in children with Plasmodium falciparum malaria. BMC Infect Dis 13: 117.

    • Search Google Scholar
    • Export Citation
  • 161.

    Hochman S, Kim K, 2012. The impact of HIV coinfection on cerebral malaria pathogenesis. J Neuroparasitology 3: 235547.

  • 162.

    Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI, 2013. The global distribution and burden of dengue. Nature 496: 504507.

    • Search Google Scholar
    • Export Citation
  • 163.

    Golding N, Wilson AL, Moyes CL, Cano J, Pigott DM, Velayudhan R, Brooker SJ, Smith DL, Hay SI, Lindsay SW, 2015. Integrating vector control across diseases. BMC Med 13: 249.

    • Search Google Scholar
    • Export Citation
  • 164.

    Mushtaq MB, Qadri MI, Rashid A, 2013. Concurrent infection with dengue and malaria: an unusual presentation. Case Rep Med 2013: 520181.

  • 165.

    Magalhaes BM, Alexandre MA, Siqueira AM, Melo GC, Gimaque JB, Bastos MS, Figueiredo RM, Carvalho RC, Tavares MA, Naveca FG, Alonso P, Bassat Q, Lacerda MV, Mourao MP, 2012. Clinical profile of concurrent dengue fever and Plasmodium vivax malaria in the Brazilian Amazon: case series of 11 hospitalized patients. Am J Trop Med Hyg 87: 11191124.

    • Search Google Scholar
    • Export Citation
  • 166.

    Deresinski S, 2006. Concurrent Plasmodium vivax malaria and dengue. Emerg Infect Dis 12: 1802.

  • 167.

    Carme B, Matheus S, Donutil G, Raulin O, Nacher M, Morvan J, 2009. Concurrent dengue and malaria in Cayenne Hospital, French Guiana. Emerg Infect Dis 15: 668671.

    • Search Google Scholar
    • Export Citation
  • 168.

    Thangaratham PS, Jeevan MK, Rajendran R, Samuel PP, Tyagi BK, 2006. Dual infection by dengue virus and Plasmodium vivax in Alappuzha District, Kerala, India. Jpn J Infect Dis 59: 211212.

    • Search Google Scholar
    • Export Citation
  • 169.

    GAHI, 2014. Global Atlas of Helminth Infections. Available at: www.thiswormyworld.org. Accessed December 28, 2014.

  • 170.

    Melo GC, Reyes-Lecca RC, Vitor-Silva S, Monteiro WM, Martins M, Benzecry SG, Alecrim M, Lacerda MV, 2010. Concurrent helminthic infection protects schoolchildren with Plasmodium vivax from anemia. PLoS One 5: e11206.

    • Search Google Scholar
    • Export Citation
  • 171.

    Boel M, Carrara VI, Rijken M, Proux S, Nacher M, Pimanpanarak M, Paw MK, Moo O, Gay H, Bailey W, Singhasivanon P, White NJ, Nosten F, McGready R, 2010. Complex interactions between soil-transmitted helminths and malaria in pregnant women on the Thai-Burmese border. PLoS Negl Trop Dis 4: e887.

    • Search Google Scholar
    • Export Citation
  • 172.

    Williams TN, Maitland K, Phelps L, Bennett S, Peto TE, Viji J, Timothy R, Clegg JB, Weatherall DJ, Bowden DK, 1997. Plasmodium vivax: a cause of malnutrition in young children. QJM 90: 751757.

    • Search Google Scholar
    • Export Citation
  • 173.

    Baird JK, Valecha N, Duparc S, White NJ, Price RN, 2016. Diagnosis and treatment of Plasmodium vivax malaria. Am J Trop Med Hyg 95 (Suppl 6): 3551.

  • 174.

    Sumawinata IW, Bernadeta, Leksana B, Sutamihardja A, Purnomo, Subianto B, Sekartuti, Fryauff DJ, Baird JK, 2003. Very high risk of therapeutic failure with chloroquine for uncomplicated Plasmodium falciparum and P. vivax malaria in Indonesian Papua. Am J Trop Med Hyg 68: 416420.

    • Search Google Scholar
    • Export Citation
  • 175.

    Baird JK, Leksana B, Masbar S, Fryauff DJ, Sutanihardja MA, Suradi, Wignall FS, Hoffman SL, 1997. Diagnosis of resistance to chloroquine by Plasmodium vivax: timing of recurrence and whole blood chloroquine levels. Am J Trop Med Hyg 56: 621626.

    • Search Google Scholar
    • Export Citation
  • 176.

    Asih PB, Syafruddin D, Leake J, Sorontou Y, Sadikin M, Sauerwein RW, Vinetz J, Baird JK, 2011. Phenotyping clinical resistance to chloroquine in Plasmodium vivax in northeastern Papua, Indonesia. Int J Parasitol Drugs Drug Resist 1: 2832.

    • Search Google Scholar
    • Export Citation
  • 177.

    World Health Organization, 2009. Methods for Surveillance of Antimalarial Drug Efficacy. Geneva, Switzerland: World Health Organization.

    • Search Google Scholar
    • Export Citation
  • 178.

    Rieckmann KH, Davis DR, Hutton DC, 1989. Plasmodium vivax resistance to chloroquine? Lancet 2: 11831184.

  • 179.

    Karunajeewa HA, Mueller I, Senn M, Lin E, Law I, Gomorrai PS, Oa O, Griffin S, Kotab K, Suano P, Tarongka N, Ura A, Lautu D, Page-Sharp M, Wong R, Salman S, Siba P, Ilett KF, Davis TM, 2008. A trial of combination antimalarial therapies in children from Papua New Guinea. N Engl J Med 359: 25452557.

    • Search Google Scholar
    • Export Citation
  • 180.

    Ratcliff A, Siswantoro H, Kenangalem E, Wuwung M, Brockman A, Edstein MD, Laihad F, Ebsworth EP, Anstey NM, Tjitra E, Price RN, 2007. Therapeutic response of multidrug-resistant Plasmodium falciparum and P. vivax to chloroquine and sulfadoxine-pyrimethamine in southern Papua, Indonesia. Trans R Soc Trop Med Hyg 101: 351359.

    • Search Google Scholar
    • Export Citation
  • 181.

    Sutanto I, Suprijanto S, Nurhayati, Manoempil P, Baird JK