Overlap in the Seasonal Infection Patterns of Avian Malaria Parasites and West Nile Virus in Vectors and Hosts

Matthew C. I. Medeiros Department of Entomology, Texas A&M University, College Station, Texas.

Search for other papers by Matthew C. I. Medeiros in
Current site
Google Scholar
PubMed
Close
,
Robert E. Ricklefs Department of Biology, University of Missouri–St. Louis, St. Louis, Missouri.

Search for other papers by Robert E. Ricklefs in
Current site
Google Scholar
PubMed
Close
,
Jeffrey D. Brawn Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois.

Search for other papers by Jeffrey D. Brawn in
Current site
Google Scholar
PubMed
Close
,
Marilyn O. Ruiz Department of Pathobiology, University of Illinois, Urbana, Illinois.

Search for other papers by Marilyn O. Ruiz in
Current site
Google Scholar
PubMed
Close
,
Tony L. Goldberg Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin.

Search for other papers by Tony L. Goldberg in
Current site
Google Scholar
PubMed
Close
, and
Gabriel L. Hamer Department of Entomology, Texas A&M University, College Station, Texas.

Search for other papers by Gabriel L. Hamer in
Current site
Google Scholar
PubMed
Close
Restricted access

Multiple vector-borne pathogens often circulate in the same vector and host communities, and seasonal infection dynamics influence the potential for pathogen interactions. Here, we explore the seasonal infection patterns of avian malaria (Haemosporida) parasites (Plasmodium and Haemoproteus) and West Nile virus (WNV) in birds and mosquitoes in suburban Chicago. We show that both pathogens vary seasonally in Culex mosquitoes and avian hosts, but that patterns of covariation are complex. Different putative Plasmodium species varied asynchronously across the season in mosquitoes and birds, suggesting that different forces may govern their transmission. Infections of Culex mosquitoes with Plasmodium parasites were positively associated with WNV infections in pools of individuals aggregated from the same time and site, suggesting that these pathogens respond to common environmental drivers and co-circulate among the same host and vector populations. Future research should focus on these common drivers, and whether these pathogens interact in vectors and hosts.

Author Notes

* Address correspondence to Matthew C. I. Medeiros or Gabriel L. Hamer, Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX. E-mails: matthewcimedeiros@tamu.edu or ghamer@tamu.edu

Financial support: This study was supported by the National Science Foundation grants EF-0429124 and EF-0840403 (awarded to Uriel Kitron, Tony Goldberg, Jeffrey Brawn, Marilyn Ruiz, and Edward Walker), the Whitney Harris World Ecology Center, and the St. Louis Audubon Society.

Authors' addresses: Matthew C. I. Medeiros and Gabriel L. Hamer, Department of Entomology, Texas A&M University, College Station, TX, E-mails: matthewcimedeiros@tamu.edu and ghamer@tamu.edu. Robert E. Ricklefs, Department of Biology, University of Missouri–St. Louis, St. Louis, MO, E-mail: ricklefs@umsl.edu. Jeffrey D. Brawn, Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL, E-mail: jbrawn@illinois.edu. Marilyn O. Ruiz, Department of Pathobiology, University of Illinois, Urbana, IL, E-mail: moruiz@illinois.edu. Tony L. Goldberg, Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, E-mail: tgoldberg@vetmed.wisc.edu.

  • 1.

    Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P, 2006. Seasonality and the dynamics of infectious diseases. Ecol Lett 9: 467–484.

  • 2.

    Focks DA, Daniels E, Haile DG, Keesling JE, 1995. A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53: 489–506.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ruiz MO, Chaves LF, Hamer GL, Sun T, Brown WM, Walker ED, Haramis L, Goldberg TL, Kitron UD, 2010. Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasit Vectors 3: 19.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Tempelis CH, Washino RK, 1967. Host-feeding patterns of Culex tarsalis in the Sacramento Valley, California, with notes on other species. J Med Entomol 4: 315–318.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Tempelis CH, Reeves WC, Bellamy RE, Lofy MF, 1965. A 3-year study of feeding habits of Culex tarsalis in Kern County, California. Am J Trop Med Hyg 14: 170.

  • 6.

    Tempelis CH, 1975. Host-feeding patterns of mosquitos, with a review of advances in analysis of blood meals by serology. J Med Entomol 11: 635–653.

  • 7.

    Hamer GL, Kitron UD, Goldberg TL, Brawn JD, Loss SR, Ruiz MO, Hayes DB, Walker ED, 2009. Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am J Trop Med Hyg 80: 268–278.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD, 2006. Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci 273: 2327–2333.

  • 9.

    Tempelis CH, Francy DB, Hayes RO, Lofy MF, 1967. Variations in feeding patterns of seven culine mosquitoes on vertebrate hosts in Weld and Larimer Counties, Colorado. Am J Trop Med Hyg 16: 111.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Burkett-Cadena ND, Hassan HK, Eubanks MD, Cupp EW, Unnasch TR, 2012. Winter severity predicts the timing of host shifts in the mosquito Culex erraticus. Biol Lett 8: 567–569.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, 2006. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4: 606–610.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kim KS, Tsuda Y, 2010. Seasonal changes in the feeding pattern of Culex pipiens pallens govern the transmission dynamics of multiple lineages of avian malaria parasites in Japanese wild bird community. Mol Ecol 19: 5545–5554.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Reisen WK, Cayan D, Tyree M, Barker CA, Eldridge B, Dettinger M, 2008. Impact of climate variation on mosquito abundance in California. J Vector Ecol 33: 89–98.

  • 14.

    Eisen L, Bolling BG, Blair CD, Beaty BJ, Moore CG, 2008. Mosquito species richness, composition, and abundance along habitat-climate-elevation gradients in the northern Colorado front range. J Med Entomol 45: 800–811.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Allander K, 1997. Reproductive investment and parasite susceptibility in the great tit. Funct Ecol 11: 358–364.

  • 16.

    Nordling D, Andersson M, Zohari S, Gustafsson L, 1998. Reproductive effort reduces specific immune response and parasite resistance. Proc Biol Sci 265: 1291–1298.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hamer GL, Walker ED, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Schotthoefer AM, Brown WM, Wheeler E, Kitron UD, 2008. Rapid amplification of West Nile virus: the role of hatch-year birds. Vector Borne Zoonotic Dis 8: 57–67.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Janousek WM, Marra PP, Kilpatrick AM, 2014. Avian roosting behavior influences vector-host interactions for West Nile virus hosts. Parasit Vectors 7: 399.

  • 19.

    Krebs BL, Anderson TK, Goldberg TL, Hamer GL, Kitron UD, Newman CM, Ruiz MO, Walker ED, Brawn JD, 2014. Host group formation decreases exposure to vector-borne disease: a field experiment in a ‘hotspot’ of West Nile virus transmission. Proc Biol Sci 281: 20141586.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cox FEG, 2001. Concomitant infections, parasites and immune responses. Parasitology 122: S23–S38.

  • 21.

    Kenney JL, Brault AC, 2014. The role of environmental, virological and vector interactions in dictating biological transmission of arthropod-borne viruses by mosquitoes. Adv Virus Res 89: 39–83.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ezenwa VO, Etienne RS, Luikart G, Beja-Pereira A, Jolles AE, 2010. Hidden consequences of living in a wormy world: nematode-induced immune suppression facilitates tuberculosis invasion in African Buffalo. Am Nat 176: 613–624.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Johnson PTJ, Hoverman JT, 2012. Parasite diversity and coinfection determine pathogen infection success and host fitness. Proc Natl Acad Sci USA 109: 9006–9011.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Vaughan JA, Turell MJ, 1996. Dual host infections: enhanced infectivity of eastern equine encephalitis virus to Aedes mosquitoes mediated by Brugia microfilariae. Am J Trop Med Hyg 54: 105–109.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Vaughan JA, Turell MJ, 1996. Facilitation of Rift Valley fever virus transmission by Plasmodium berghei sporozoites in Anopheles stephensi mosquitoes. Am J Trop Med Hyg 55: 407–409.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Valkiunas G, 2005. Avian Malaria Parasites and Other Haemosporidia. Boca Raton, FL: CDC Press.

  • 27.

    Ellis VA, Cornet S, Merrill L, Kunkel MR, Tsunekage T, Ricklefs RE, 2015. Host immune responses to experimental infection of Plasmodium relictum (lineage SGS1) in domestic canaries (Serinus canaria). Parasitol Res 114: 3627–3636.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Applegate JE, Beaudoin RL, 1970. Mechanism of spring relapse in avian malaria: effect of gonadotropin and corticosterone. J Wildl Dis 6: 443–447.

  • 29.

    Cosgrove CL, Wood MJ, Day KP, Sheldon BC, 2008. Seasonal variation in Plasmodium prevalence in a population of blue tits Cyanistes caeruleus. J Anim Ecol 77: 540–548.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Beaudoin RL, Applegate JE, Davis DE, McLean RG, 1971. A model for the ecology of avian malaria. J Wildl Dis 7: 5–13.

  • 31.

    Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, Crabtree MB, Scherret JH, Hall RA, MacKenzie JS, Cropp CB, Panigrahy B, Ostlund E, Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage HM, Stone W, McNamara T, Gubler DJ, 1999. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286: 2333–2337.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Murray KO, Mertens E, Despres P, 2010. West Nile virus and its emergence in the United States of America. Vet Res 41: 67.

  • 33.

    LaDeau SL, Kilpatrick AM, Marra PP, 2007. West Nile virus emergence and large-scale declines of North American bird populations. Nature 447: 710–713.

  • 34.

    Wimberly MC, Giacomo P, Kightlinger L, Hildreth MB, 2013. Spatio-temporal epidemiology of human West Nile virus disease in South Dakota. Int J Environ Res Public Health 10: 5584–5602.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hahn MB, Monaghan AJ, Hayden MH, Eisen RJ, Delorey MJ, Lindsey NP, Nasci RS, Fischer M, 2015. Meteorological conditions associated with increased incidence of West Nile virus disease in the United States, 2004–2012. Am J Trop Med Hyg 92: 1013–1022.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Medeiros MCI, Anderson TK, Higashiguchi JM, Kitron UD, Walker ED, Brawn JD, Krebs BL, Ruiz MO, Goldberg TL, Ricklefs RE, Hamer GL, 2014. An inverse association between West Nile virus serostatus and avian malaria infection status. Parasit Vectors 7: 415.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Boothe E, Medeiros MCI, Kitron UD, Brawn JD, Ruiz MO, Goldberg TL, Walker ED, Hamer GL, 2015. Identification of avian and hemoparasite DNA in blood-engorged abdomens of Culex pipiens (Diptera; Culicidae) from a West Nile virus epidemic region in suburban Chicago, Illinois. J Med Entomol 52: 461–468.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Harrington LC, Poulson RL, 2008. Considerations for accurate identification of adult Culex restuans (Diptera: Culicidae) in field studies. J Med Entomol 45: 1–8.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Fallon SM, Ricklefs RE, Swanson BL, Bermingham E, 2003. Detecting avian malaria: an improved polymerase chain reaction diagnostic. J Parasitol 89: 1044–1047.

  • 40.

    Fecchio A, Lima MR, Svensson-Coelho M, Marini MA, Ricklefs RE, 2013. Structure and organization of an avian haemosporidian assemblage in a neotropical savanna in Brazil. Parasitology 140: 181–192.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Outlaw DC, Ricklefs RE, 2014. Species limits in avian malaria parasites (Haemosporida): how to move forward in the molecular era. Parasitology 141: 1223–1232.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Svensson-Coelho M, Blake JG, Loiselle BA, Penrose AS, Parker PG, Ricklefs RE, 2013. Diversity, prevalence, and host specificity of avian Plasmodium and Haemoproteus in a western Amazon assemblage. Ornithol Monogr 76: 1–47.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Medeiros MCI, Hamer GL, Ricklefs RE, 2013. Host compatibility rather than vector-host-encounter rate determines the host range of avian Plasmodium parasites. Proc Biol Sci 280: 20122947.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Medeiros MC, Ellis VA, Ricklefs RE, 2014. Specialized avian Haemosporida trade reduced host breadth for increased prevalence. J Evol Biol 27: 2520–2528.

  • 45.

    Mckee EM, Walker ED, Anderson TK, Kitron UD, Brawn JD, Krebs BL, Newman C, Ruiz MO, Levine RS, Carrington ME, McLean RG, Goldberg TL, Hamer GL, 2015. West Nile virus antibody decay rate in free-ranging birds. J Wildl Dis 51: 601–608.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Chaves LF, Hamer GL, Walker ED, Brown WM, Ruiz MO, Kitron UD, 2011. Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. Ecosphere 2: 1–21.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Loss SR, Hamer GL, Walker ED, Ruiz MO, Goldberg TL, Kitron UD, Brawn JD, 2009. Avian host community structure and prevalence of West Nile virus in Chicago, Illinois. Oecologia 159: 415–424.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, Komar N, Panella NA, Allen BC, Volpe KE, Davis BS, Roehrig JT, 2000. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 38: 4066–4071.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Wickham H, 2009. ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag.

  • 50.

    Ishtiaq F, Guillaumot L, Clegg SM, Phillimore AB, Black RA, Owens IPF, Mundy NI, Sheldon BC, 2008. Avian haematozoan parasites and their associations with mosquitoes across southwest Pacific Islands. Mol Ecol 17: 4545–4555.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Njabo KY, Cornel AJ, Bonneaud C, Toffelmier E, Sehgal RNM, Valkiunas G, Russell AF, Smith TB, 2011. Nonspecific patterns of vector, host and avian malaria parasite associations in a central African rainforest. Mol Ecol 20: 1049–1061.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Lee JH, Rowley WA, 2000. The abundance and seasonal distribution of Culex mosquitoes in Iowa during 1995–97. J Am Mosq Control Assoc 16: 275–278.

  • 53.

    Andreadis TG, Anderson JF, Vossbrinck CR, 2001. Mosquito surveillance for West Nile virus in Connecticut, 2000: isolation from Culex pipiens, Cx. restuans, Cx. salinarius, Culiseta melanura. Emerg Infect Dis 7: 670–674.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Jackson BT, Paulson SL, Youngman RR, Scheffel SL, Hawkins B, 2005. Oviposition preferences of Culex restuans and Culex pipiens (Diptera: Culicidae) for selected infusions in oviposition traps and gravid traps. J Am Mosq Control Assoc 21: 360–365.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Jackson BT, Paulson SL, 2006. Seasonal abundance of Culex restuans and Culex pipiens in southwestern Virginia through ovitrapping. J Am Mosq Control Assoc 22: 206–212.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Žiegytė R, Valkiūnas G, 2015. Recent advances in vector studies of avian haemosporidian parasites. Ekologija 60: 73–83.

  • 57.

    Kimura M, Darbro JM, Harrington LC, 2010. Avian malaria parasites share congeneric mosquito vectors. J Parasitol 96: 144–151.

  • 58.

    Kim KS, Tsuda Y, 2012. Avian Plasmodium lineages found in spot surveys of mosquitoes from 2007 to 2010 at Sakata wetland, Japan: do dominant lineages persist for multiple years? Mol Ecol 21: 5374–5385.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Carlson JS, Walther E, TroutFryxell R, Staley S, Tell LA, Sehgal RNM, Barker CM, Cornel AJ, 2015. Identifying avian malaria vectors: sampling methods influence outcomes. Parasit Vectors 8: 365.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    LaPointe DA, Goff ML, Atkinson CT, 2010. Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawaii. J Parasitol 96: 318–324.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Murdock CC, Paaijmans KP, Bell AS, King JG, Hillyer JF, Read AF, Thomas MB, 2012. Complex effects of temperature on mosquito immune function. Proc Biol Sci 279: 3357–3366.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Cornet S, Nicot A, Rivero A, Gandon S, 2014. Evolution of plastic transmission strategies in avian malaria. PLoS Pathog 10: e1004308.

  • 63.

    Newman CM, Cerutti F, Anderson TK, Hamer GL, Walker ED, Kitron UD, Ruiz MO, Brawn JD, Goldberg TL, 2011. Culex flavivirus and West Nile virus mosquito coinfection and positive ecological association in Chicago, United States. Vector Borne Zoonotic Dis 11: 1099–1105.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M, 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9: 311–322.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Cornet S, Nicot A, Rivero A, Gandon S, 2013. Both infected and uninfected mosquitoes are attracted toward malaria infected birds. Malar J 12: 179.

  • 66.

    Cornet S, Nicot A, Rivero A, Gandon S, 2013. Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecol Lett 16: 323–329.

  • 67.

    Lalubin F, Bize P, van Rooyen J, Christe P, Glaizot O, 2012. Potential evidence of parasite avoidance in an avian malarial vector. Anim Behav 84: 539–545.

  • 68.

    Koella JC, Sorensen FL, Anderson RA, 1998. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc Biol Sci 265: 763–768.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Lacroix R, Mukabana WR, Gouagna LC, Koella JC, 2005. Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biol 3: 1590–1593.

Past two years Past Year Past 30 Days
Abstract Views 1235 1111 39
Full Text Views 512 12 0
PDF Downloads 119 12 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save